= , _g
Programming - User Support %

Applications

Issue Number 62

ISSN ¥ 0748-9331

July/August 1993

SCSI EPROM Programmer

Z-System Corner

DR S-100
Real Computing
Center Fold

Reminiscing and Musings

Modem Scripts

Moving Forth Part Ili

The Computer Corner

US$4.00

OSXXX COMPUTER
PRODUCTS From
Peripheral Technology

2 Parallel Ports, FDC, and RTC.
PT68K4-16 with 1MB $299.00
PT68K2-10 w/ 1MB (Used) $149.00

REX Operating System Included

0S9 V2.4 Operating System $299.00
With C, Editor, Assembler/Linker
SCULPTOR V1.14:6 for Business
Software Development - requires any
version of OS9/68K. $79.00

Other 68XXX products available!

' 1480 Terrell Mill Rd. #870
Marietta, GA 30067

404/973-2156

68000 System Boards with 4 Serial/

Cross-Assemblers .o s s
Slml.IlatOI'S as low as $100.00
Cross-Disassemblers . o -1ow
Developer Packages

as low as $200.00(a $50.00 Savings

A New Project
Our iine of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.

Get It To Market--FAST
Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.
No Source!
A minor glitch has shown up in the firmware, and you can't find the original

source program. Qur line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything. .
Quality Solutions

PseudoCorp has been providin uality solutions for microprocessor
problems snelce 1985. P 9 qually P

BROAD RANGE OF SUPPORT
e Currently we support the following micropracessor families (with
more in development):
Intel 8048 RCA 1802,05 Intel 8051 Intel 8096

Motorola 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809 MOS Tech 6502 WDC 65C02
Rockweli 65C02 Intei 8080,85 Zilog Z80 SC 800

OCkw! NSC
Hitachi HD64180 Motorola 68000,8 Motorola 68010 Intel 80C196
o Al products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develohpment Products Group
716 Thimble Shoals Blvd, Suite E
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

Joumey with us to discover the shortest path between
programming problems and efficient solutions.

The Forth programming language is a model of simplicity:
Inabout 16K, it canofferacomplete developmentsysteminterms
of compiler, editor,andassembler, aswell asaninterpretivemode
to enhance debugging, profiling, and tracing.

As an “open” language, Forth lets you build new control-flow
structures, and other compiler-oriented extensions that closed
languages do not.

Forth Dimensions is the magazine to help you along this
journey. Itisone ofthe benefits you receive asamember of the
non-profit Forth Interest Group (FIG). Local chapters, the
GEnie™ForthRoundTable,andannual FORML conferences are
alsosupported by FIG. Toreceive a mail-order catalog of Forth
literature and disks, call 510-89-FORTH or write to:

Forth Interest Group, P.O. Box 2154, Oakland, CA 94621.
Membership dues begin at $40 for the U.S.A. and Canada.
Student rates begin at $18 (with valid student LD.).

GEnie is a trademark of General Electric.

SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)

ZCPR34 source code ($15)
BackGrounder-ii ($20)
ZMATE text editor ($20)
BDS C for Z-system (only $30)
DSD: Dynamic Screen Debugger ($50)
4DOS “"zsystem" for MSDOS ($65)
ZMAC macro-assembler ($45 with printed manual)

Kaypro DSDD and MSDOS 360K FORMATS ONLY
Order by phone, mail, or modem and use
Check, VISA, or MasterCard.

Sage Microsystems East
1435 Centre Street

Newton Centre MA 02159-2469
(617) 965-3552 (voice 7PM to 11PM)
(617) 965-7259 (pw=DDT)
(MABOS on PC-Pursuit)

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Bill D. Kibler

Technical Consuitant
Chris McEwen

Contributing Editors
Herb Johnson
Charles Stafford
Brad Rodriquez
Matt Mercaldo
Tim McDonough
Frank Sergeant
JW Weaver
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year and mailed
from The Computer Journal, P. O.
Box 535, Lincoln, CA 95648, (916)
645-1670.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1993
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 one year (6 issues), $44 two
years (12 issues). All funds must be
in U.S. dollars drawn on a U.S.
bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.O. Box 535, LinccIn,CA 95648.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple I, I+, llc, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder i,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket,
Nantucket, Inc. dBase, dBASE Il, dBASE Iil, dBASE I}
Plus, dBASE IV; Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar; MicroPro Inter-
national. IBM-PC, XT, and AT, PC-DOS; I1BM Corpora-
tion. Z80, Z280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Journal, they are acknowledged to be the
property of the respective companies even if not specifi-
cally acknowledged in each occurrence.

TC

The Computer JOurnaI

Issue Number 62 July/August 1993

Editor’'s Comments.........ccceeeeeeiisrmennnmrmessssssssssnnnesssese &

Reader to Reader............ccccoocreeerrnne. sesessssassssasaiisninee O
Real Computing Ctrverrreerenae e re e e rn s e anesanasss 7
JPEG and INTERNET information.

By Rick Rodman.

Z-Systems Corner..........cccvssunsrsseneninas ceresssrnsssennsenens 12
Live from Israel!

By Jay Sage.

DR $-100........... teerersessarereriesessesssnmartrEesreneeesnssannneranas 14
Exploring the S-100 BUS.

By Herb Johnson.

Reminiscing and Musingsc..c.cccuuueee. PP | -

More 10th Year discussions.
By Frank Sergeant.

Modem Scriptscccceericcirirc e, 23

Some simple Forth examples.
By Walter J. Rottenkolber.

Center FOI...ooiiiiimriiirmansiseicrnsssisrresssssrssmmssssesesennssnnes 20
The XEROX 820.

SCSI EPROM Programmerccccceesueneen. crnrensrenees 29

Build a simple EPROM programmer for SCSI bus.
By Terry Hazen.

Moving FOrthcccmriercerccnnnsninnnnecsneesseannenn 94
Part 111, some important and valuable words.
By Brad Rodriguez.

Programming the 6526 CIA ceervsssnneessnnnnsneens 43

Simple I/O in BASIC.
By Ralph Tenny.

The Computer Corner.........cowvvninseensesinnssssnsssenneess 91
Altering CP/M and LANS.
By Bill Kibler.

EDITOR'S COMMENTS

Welcome to issue #62 and what a sur-

- prise! Many surprises await you inside

this issue, besides coming to you on time
for a change. Yup, we did it, caught up
at last. When issue #61 was done, I had
enough to do #62 right away, and did.
Trying a new printer, and oh yes, taking
2 months off from work helped some as
well.

I have published our schedule in the past
(and will again, space permitting) of
when T'CJ goes to press. As a reminder
to all (especially my writers) it goes some-
thing like this. For a Sept/Oct issue, I
want the material in my hands by mid
August, that is two weeks before the first
day of the listed month. I put the maga-
zine together on the first day of Septem-
ber (or the named month of publication)
and have it at the printer by the tenth. I
generally will get it back by the 20th,
with the post office getting it by the
25th. That means you should get a Sep-
tember/October issue before October 1.
That also means the information in TCJ
should not be more than 30 days old (45

“max)!

Inside Surprises

This issue is special in other ways, with
three feature articles and more 10th year
comments. We start out with Rick Rod-
man talking about using EMAIL and a
glossary of internet terms. Herb Johnson
is back from moving to fill us in on S-
100 buses and buses in general.

Summer is a time for vacations, and my
catch up issue caught several of our regu-
lars gone from home. Chuck Stafford is
preparing an article on customizing CP/
M and JW Weaver plans to catch up
next issue on user groups. I had so many
special items this time, I put CP/M notes
inside my Computer Corner. Next time
I promise to have a full discussion of CP/
M for you beginning hackers.

Talk about vacationing but still support-
ing Z-Systems, is none other than our
world trotting expert Jay Sage. Live from
Israel via internet is Jay’s column on
what is for sale at Sage Microsystems
East. Jay fills us in on price changes and
just what you get for your money. It is
just enough information to make you
more curious, at least that is what hap-
pened to me. I plan on ordering several
programs as soon as Jay gets back (be-
fore you get this issue), now that I know
what they can do for me. Actually Jay
has covered all these items in his past
columns, but it is not often I can get him
to talk about them all in ong issue. Good
going Jay, and hope you enjoyed your
well earned time off.

Special Features

The surprises just keep coming, with a
special editorial by Frank Sergeant. Due
to my problems with subscriptions, Frank
did not get his issues on time, and ended
up setting on two articles. Well here they
are, a special 10th Year Anniversary
review in which he talks about his trials
and such in producing Pygmy Forth.
There is some good words in there about
doing shareware or public domain devel-
opment (also check out the Parker letter
in Reader to Reader). Frank then muses
and talks about everything except the
kitchen sink (only because they haven’t
put computers in them yet, or have they?)

Our hardware and SCSI people will be
happy with Terry Hazen’s SCSI EPROM
programmer. This issue brings you the
hardware design, while next issue will
have the software discussion. Terry has
done some great work here, by keeping
it simple and straight forward, most of
our readers should be able to build it.
Hopefully next issue will fill in any gaps
in your understanding as we cover the
software.

Our ever moving forward Brad Rodriguez

is back with installment 3 of his Moving
Forth series. He takes this issue to cover
words that usually only the more ad-
vanced Forth person might use. For you
beginners, his discussion should make
you into intermediate programmers in
one lesson (notice I didn’t say “‘casy’’).
Brad also found some minor flaws in his
past work which he corrects this time
(also shows that you readers have been
reading his stuff?)

Almost last is a promised discussion by
Walter Rottenkolber on scripts in Forth
for modems. Had planned on running
this last issue, but ran out of space. With
a few people on vacation, Walter gets to
fill in and that he does. His fillers are
“SFT’s” or Stupid Forth Tricks (his
choice of words). These were intended
to be page fillers, but I was getting such
a collection that I decided to lump them
all in this issue (as I know Walter will
send more).

Now for the last word, my Computer
Comner looks at moving CP/M, LANS,
and what language is appropriate if there
is such a thing.

Business Note

This month I have started using post
cards for renewal notices. John Hall of
FIG indicated it took three notices to get
people to pay. Well I will be sending you
a pre-notice, a this is it, and you’ve lost
it notices. Hopefully only one will be
enough to get you to renew. Please
check your mailing label each issue, as
I will be changing it’s appearance and
as always it will have your expiration
issue boldly displayed. I will be updat-
ing and changing databases which will
require a few minor changes. Please
check your labels and let me know if
something is not correct.

Happy Reading, Bill Kibler.

The Computer Journal / #62

READER to READER

Hi Bill -
Here’s that ‘‘Reader to Reader’’ letter I
promised from issue #60.

I'm eagerly awaiting issue #61, to get a
look at Walter Rottenkolber’s modem
script language in Forth. T have wanted
such a thing many times, but without the
inspiration (or gumption) to sit down
and do it. Walter sounds like he has Just
The Thing.

And I, for one, am very interested in Art
Carlson’s proposed articles on measure-
ment, control, and particularly motion
control. In my “‘old”’ 7CJs Art’s articles
are among the most useful..I’'m still
learning how to interface steppers and
servos!

To give some perspective: 1 recently re-
turned to university to fill in some defi-
" ciencies in my 1970’s computer science
and electrical engineering education.
There were three hot topics in which I
felt lost: artificial intelligence, digital
signal processing, and robotics. All of
the stuff written about these is either
completely moronic (e.g., how to choose
a commercial Al product), or up in the
stratosphere with a huge amount of
knowledge (and jargon) assumed. Well,
I've tackled Al, and I understand the
principles of DSP (although I’ve not yet
done a DSP project). But university
robotics courses seem to be either about
a) machine vision, or b) how to program
commercially made industrial robots.
Phooey! I want to learn how to build my
own robotics!

I definitely like the direction you are
taking TCJ -- tinkering and ‘‘classic’
computer support -- and intend to write
some more hardware articles, soonest. I
approve of your decision to make the

The Computer Journal / #62

articles more accessible to newcomers,
and I'm working hard to change my
style.

In the meantime, I want to encourage
other TCJ readers to begin writing about
what they’re doing. Often, a project you
think trivial is of vital interest to some-
one else! (Like Walter’s modem script
article is to me!) And even if you have
only a partial understanding of your
subject, you can write an article which is
helpful to a beginner. Sometimes your
article is *more* helpful, simply because
it’s not written from the Ph.D. level.

Finally, I'm really enjoying ‘‘Dr. S-
100, ““Mr. Kaypro,”’ and the new
““Support Groups for the Classics.” 1
have several S-100 systems I’'m hoping
to piece together, and I”ve just acquired
a few Kaypros. When I get one running
-- Real Soon Now, with 7CJ’s help - 1
expect to become a regular reader of ““Z-
Systems Corner.”” (P.S. I still relish
““The Computer Corner”” and ‘‘Real
Computing,”’ too.)

Regards,
Brad Rodriguez

Thanks Brad for your letter and hard
work! Actually your the only one I need
to not send me so much. Your great
articles are really helping, but could
you put them in a bit more “‘BITE "’ size
Sormat. I keep putting things off, just to
get all of your stuff in. Well one item
missing from #61 was the modem scripts
(in this issue) and I guess I could blame
it on you (your big articles) but actually
it just slipped away. I am trying a new
printer who promises to print larger is-
sues for same price, so only weight will
now limit the number of pages I can use
(need to stay under 6 ounces else cost to

mail doubles!). Thanks for all the goed
work, Bill.

Dear Mr. Kibler

Please excuse this rather lengthy letter.
I am filled with enthusiasm and ques-
tions. I received my first issue of 7CJ by
answering your ad in Nuts & Volts for a
free trial copy. I received your 10th Year
Anniversary edition to look over. I
couldn’t put it down. There were articles
on CP/M, Forth, S-100, software and
hardware how-to’s with explanations of
the why (just items I’ve been looking for
- all in one place). Hey, this kind of
reminds me of the old Byte magazines I
use to get back in the 70°s and early 80°s
(how I miss them). Just the type of pub-
lication I have been looking for. Any-
way, your 10th Yr. Aniv. edition couldn’t
have arrived at a better time. Misosys,
Inc. was having a close-out sale of the
TRS-80 Model 1,3,4 items and dropping
support for a lot of this stuff. I got a copy
of their C-complier as well as
HartForth(79-Standard by A. M. Gra-
ham). Also picked up their SCSI inter-
face card for Seagate MFM Hard Drives.
Now what does this have to do with you
and TCJ. Well, with Misosys slacking
their support on these machines, a few
people who still use TRS-80 Model 1,3,4
computers (Z80 cpu) are trying to de-
velop a SCSI-2 interface (in particular
for a CD-ROM).

I was looking thru your back issues list-
ing to see what type of articles TCJ had
been doing and found several SCSI re-
lated items. Say these/look like they may
be helpful and cut down development
expense (time and money). Well shortly
after this, Stan Slater of Computer News
80 had posted some info about Z280
board on the TRS MOD134 Fidonet Echo
and listed TCJ, Jay Sage and some oth-

ers. Boy, sounds like better subscribe.
So, I did. Now issue #61 has just been
devoured and marked up with notes.
Talking about timing. Your ““Beginning
CP/M”’ in #61, p18 has been very help-
ful and informative. Just where I needed
to start.

Thank you for 7CJ!
" Now for the questions (related to the
TRS-80 (Z80) model 4 computers).

Q1 - How can I obtain only the article
reprints on the SCSI items you had in
prior issues (detail list enclosed).

Q2 - T have both CP/M 2.2 and 3.0 for
my computer. What is Z3PLUS,
NZCOM, etc... and can I use them with
the above computer.

Q3 - Do you support the TRS-80 ver-
sions of CP/M in particular CP/M Plus
(3.0) by Digital Research licensed to
Radio Shack and CP/M 2.2 by
Montezuma Micro.

Q4 - Can I use MP/M on a single Z80
¢pu and if so, where do I find it and the
source code.

Q5 - In issue #60 p13, you mention that
Alpha Systems (Joe Wright) has/had the
right to market the 8-bit version of Turbo
. Pascal. What is his/their address? I have
T.Pas v2.0A w/missing docs and would
like to upgrade it if possible as well as to
sce if there is a version that will run on
LS-DOS 6.3.1. by Misosys (Roy Soltoff).

Q6 - In issue #60 p23 (‘‘Real Comput-
ing”’ by Rick Rodman), Minix is men-
tioned. Has this been ported to Z80 plat-
forms\ or is this only for a 16-bit cpu on
up. If this has been ported to a Z80
where do I Find it and if not, is there
another Unix like OS for Z80 cpus.

Q7 - In issue #61 the “‘Center Fold”’
shows a Xerox 820. How does this relate
to the TRS-80 Model 1,3,4 computers. I
have a manual for a clock speed-up board
from Holmes Engineering that list both.
Also what is the ““Big Board’’ and
““Micro Cornucopia’ .

Thank you for your assistance in these
matters.

Sincerely, Mike Michaels, Canton, IL.

Well Mike, thanks for the great review
and letter. I am glad we were able to
answer so many of your questions with
Just two issues. For the rest of those
questions:

Q1 - Currently I do not have reprint
series. 1 plan to start doing so in the
Juture, but for now you must just buy the
back issues. 1 am starting to make bound
versions available (which will save some
money) but you might just want to take
advantage of the 15% discount and or-
der all back issues up to your starting
issue. If you just want those covering the
SCSI topic, I can give you a 10% large
quantity discount (pre-paid or credit
cards orders).

Q2 - By getting those back issues, you
will be able to read all of Jay Sages Z-
System Corner where he has explained
all about ZCPR for the past 8 years.
Basically it is an enhanced and super
CP/M replacement and should work
where ever CP/M 2.2 has been running.

Q3 - We support any old classic system.
Do we have special articles on TRS-
80s? Not yet, but maybe you could en-
lighten use as it seems you have quite a
collection of them. I do remember that
the TRS-80 required a special version of
CP/M, unless you had an adapter board
that moved their ROM from low memory.
Most CP/M’s have interrupt vector tables
starting at bottom of memory, while TRS-
80°s put their ROM there. Taking that in
to mind, our articles and programs should
work as given, and especially the Forth
ones which we try to make platform in-
dependent.

04 - MP/M is the CP/M version of a
multi-user system for single Z80s. I am
not sure about new sources for it and
even more unsure about a version for
any of the TRS-80 models. I will have to
defer to our readers for the latest on this
issue.

Q5 -1 believe Jay Sage was selling Turbo
Pascal and may still have some. Best to
call him or send him a message (see his
ad on the front cover).

06 - Minix is available through book
stores or by calling Prentice-Hall. It is

available for many 16 bit systems. In
“Real Computing’’ (issue #5)8 is infor-
mation about UZI a Unix like OS for
Z80 systems. You can download this from
the CP/M section of GEnie as I did. A
few of our readers have mentioned they
might rewrite UZI for the newer Z180/
280 systems with multi banks of meniory.
Until then the Unix for Z80 is not much

to offer.

Q7 - There were several computer sys-
tems that started the microcomputer
revolution. Altair and IMSAI were lead-
ers in the S-100 or BUS based systems.
Big Boards were single all inclusive (no-
expansion provided) micro-systems.
Each had their own group of enthusiast
and magazines supporting them. Micro
Cornucopia supported the Big Boards
just after the computer became avail-
able (vou might check a back issue of
Byte where Dave Thompson had a short
article on putting the Big Board Kit
together and said he was startling a
newsletter for them that became the
Micro Cornucopia magazine, no longer
printing, but we are planning on getting
the rights to reprint them, soon!). Later
the design became the basis for Kaypros
and Xerox computers. The clock speed
up (thanks for the copies of the informa-
tion) would work on any Z80 system that
used a similar clock circuit and had a
socketed Z80 chip. What Holmes sold
was a plug in board that held the old
280 and controlled the signals from the
mother board. You might checkout Chuck
Staffords Kaypro support column as some
of his information might cross over to
TRS-80s.

Hopefully Mike, I have answered all your
questions, and if not try writing to some
of our writers directly. I can not stress
strongly enough that you should con-
sider buying all the back issues. The
index just can’t cover all the little other
articles that might apply to your projects.
The regular columns, like my Computer
Corner, often have detailed explanations
and projects that would be just what
your needing.

Thanks Again, Bill Kibler.

Dear 7CJ

I'd like to subscribe to 7CJ. I've en-
closed a money order for $24 for one

The Computer Journal / #62

year. 1 guess the main reason I'm sub-
scribing is due to Brad Rodriguez’s ar-
ticles. I've written to him several times
in the past 5 months and he’s been quite
helpful in my getting a Forth running on
a Color Computer 3.

Most of your articles are somewhat spe-

cific, but there seems to be enough ge-
" neric material to be useful. I’m not really
all that hardware oriented and I'm just
now learning Forth (I’'m planning on
writing a chess program), but 7CJ seems
like it’s worth $24.

I like the center folds. I don’t really have
a use for them, but I like history. At least
with TCJ 1. ‘on’t have to hide that I own
and use a Color Computer 3 with 512K
and OS89 level 2. (I've had a CoCo since
Dec 1982) Compared to some in the
TCJ, I'm using a modern computer!

Sincerely, Carey Bloodworth, Van Buren,
AR

Glad to see your appreciating TCJ! We
don’t have very many OS9 articles yet,
but if I can get some of YOU readers to
send us an article or two maybe others
will become interested and vocal. I will
be printing some Center Folds of GIMIX
or 6809 systems later, which should be
of interest to you. Actually I sometimes
. think CoCo'’s and such are more modern
than PC clones, at least OS9 is closer to
a real operating system than PCDOS!
Welcome to TCJ! BDK.

Dear TCJ,

I’'m in the process of reading my trail
issue of your magazine, #60. I really do
enjoy this type of reading. I wish to
express my thanks to PesudoCorp for the
trail issue offer included with their bro-
chure.

I'm not a professional programmer nor
an electronic engineer. I just consider
myself as a computer hobbyist, and as
such I try to learn as much as I can about
all the different types of microproces-
sors. I do program my own systems some,
I have two IBM PC/AT 386 clones and
an old Z100 from Zenith Data Systems.

I had tried in the past to obtain informa-
tion on the Zilog Z8000 & Z80000 but

The Computer Journal / #62

had no luck. I wish I could find a SBC
based on the Zilog processors that will
fit in my ISA bus computers, so far I've
had no luck in this endeavor.

As I mentioned before, I am just a com-
puter hobbyist but I'm afraid that I have
taken it to the extreme. 1 have spent
about $3,000.00 on various sofiware tools
and books which include MASM 6.0,
Matrix Layout 2.0, MSC 5.1 and Mix
Software’s POWER C. Last but the most
costly item in itself, is my own OEM
License for General Software’s Embed-
ded DOS Source Adaptation Kit. I think
that at the time I had more cash than
brains, anyway I have used the Source
Adaptation Kit to enhance my knowl-
edge of Operating Systems (MS-DOS
type) for the Intel 80x86 processors and
to help teach myself how to program. I
actually have my own Operating System
which resembles MS-DOS 3.31 but based
on Embedded DOS. It will not run MS
WINDOWS or some protected mode
programs yet but for real mode it works
great. My OS will run some of MS-DOS
5.0 device drivers and utilitics when [
have it return its version number as 5.00
in the proper registers.

If any of your staff or readers/subscribers
are interested in my Operating system
which I call MCOS or Micro Computer
Operating System for lack of something
better, please feel free to call or write to
me at my address above. Please no col-
lect calls, I have just been laid off my
regular job as an Electrical Technician
for a contractor under contract for our
local Naval Base, so now I've got to
pinch my pennies.

One more thought, I don’t recommend
computer hobbyist to go to the extreme
that [have. If they cannot get a return on
their investment, then just take it easy on
the pocket book and think about if you
really need to purchase all of that stuff
BEFORE it is purchased!! My return for
my investment is the knowledge I’ve
gained and satisfaction of having my
own OS, even if I never market my
MCOS to the public. My cost for royal-
ties to are small and based on each copy
produced which has been none so far,
other than for myself to test. If any small
companies need an Operating System

for their 8088-80x86, V20-V50 type
projects, check out General Software. If
you think the GS price is too high (I do
) then check with me. I must remind you
that my programming skills aren’t as
good as the good folks at GS.

Thank You, Danny M. Parker, Route 1
Box 548-R, Toomsuba, MS 39364, (601)
632-1720.

Well Danny, it seems you fell pray to the
PC mania. That is what I dislike about
the whole PC-clone market and espe-
cially the DOS world. If you want to do
anything, you had better have deep pock-
ets. We at TCJ keep saying that if you
want to learn, DON'T BUY PC, but buy
“CLASSIC"". You could have done all
the same things for about 3300, not the
$3000 you spent.

I am sure a few of our readers may be
interested in your OS, but unless it is
simple or easy to change like Forth, I
don’t expect you will have much luck.
Big companies who could afford your
stuff, would want you to provide lots of
expensive support. I really can not ex-
press how important it is for our readers
to remember how easy it is to get carried
away with a project and over engineer
or spend on it (in your case). I am afraid
what you learned was how easy your
money can go away and not how com-
puter systems worked.

Hopefully we can show you how to keep
tinkering for only 824.00 a year. And
yes the Z80 is a Zilog part and maybe
you need to check out some back issues
that cover 7180 and 7280 projects. The
Z8000 and above are used in telephone
switches by the thousands. With that type
of sales who cares about personal com-
puters using Z8000 CPU’s. We were try-
ing to develop a Z180 ISA board, but
didn’t get any reader interest. Check out
MYZ80, a Z80/CP/M emulator for the
PC (reviewed in #57), or check at swap
meets for older Z80 plug in boards. 1
have one without software, but hope to
find something for it soon (a Microlog
Z80B).

Thanks for the words of wisdom, Bill
Kibler.

Bill,

The 10th Year Anniversary issue was
great! I am impressed with the changes
you have made to The Computer Jour-
nal. Chuck Stafford’s ‘‘Mr. Kaypro™
column and Herb Johnson’s *‘Dr. 8-100™
column are great additions to the publi-
cation.

At home 1 use four computers on a regu-
lar basis. I have a Kaypro 10, a Zenith Z-
100, a Z-150, and a 486 IBM AT clone.
I would like to see continued support for
the Kaypro 10, and perhaps more for the
Z.100, which I also consider to be a clas-
sic computer.

As a reader, I prefer long articles to be
broken up over several issues. I also have
an idea for another article that I could
write. While The Computer Journal has
focused more on hardware lately, I also
would like to write an article comparing
high-level computer languages that are
available on classic systems. I could take
a particular program and write it in
BASIC, FORTRAN, COBOL (yes I did
write COBOL) and PASCAL. After
briefly comparing the coding features of
each, I could report on how well they
perform when run on the same computer
against the same data. We could call the
article ‘‘High-Level Language Run Off.”
Maybe someone could follow up with a
comparison of the same application writ-
ten in assembly, Forth, and C?

Let me know if you think this idea is
worth pursuing and if 7CJ readers would
be interested. Thanks again for the hard
work you’re put into The Computer Jour-
nal, it shows!

Sincerely, Steve Westlund. Belleville, IL.

Your article sounds great Steve, only |
have gotten tired of speed based re-
views. What our readers want to know is
how 1o use their favorite language with
code based on some other language. 1
would appreciate it if you focused on
reliability, interfacing with editors, num-
ber of steps to get output, debugging
taals or lack there of, and ves what type
of output is produced in relation to oth-
ers (bad code runs slow, but does it run
at all?). How about a series of small
articles, the first laying out the project

and what you want the software to do. A
lot of people are upgrading to laser
printers, so how about a page format-
ting (like two pages on one) or laking
some dot matrix printer's ESC codes
and converting them to the laser print-
ers different ESC codes. Use Pascal or
a Pascal like pseudo code and then in
each article convert that to a different
language, with debugging and compil-
ing tips thrown in. Take the last article
to review and compare all the results.
Interested? I am. Thanks Bill Kibler.

Gentlemen,
Enclosed is my money for......

I also have some questions:

Are you aware of a source for informa-
tion such as the original Digital Research
Alteration Guide or other which shows
how to tailor MOVCPM to a specific
CPM system?

I have an orphan Royal aplha Tronic
CP/M 2.2 system with source listings for
BIOS and MONITOR program seg-
ments, but the MOVCPM program that
came with it doesn’t work. (At least I
can’t make it work, the first statements
just start reading at 5SDh, the program
name, and result in an ‘‘Invalid Memory
Size’’ error).

Are there back issues other than those
above(than I am buying) which address
modifying the CP/M disk system?

I would like to modify the BIOS to be
able to use IBM compatible floppy disk
formats.

Thank You, James M. Harper, Bellevue,
WA,

P.S. I just read the letters (Reader to
Reader) where you mentioned you are
interested in collecting old computer
source code. If you are interested in the
Royal alpha Tronic, I'd be glad to send
listings-1 don’t have the true source on
disk. JMH.

Thanks for the order James. I have talked
with Chuck and he is working on several
articles that show and explain how to
move and change CP/M. It has been
several years since I put together CP/M
Jrom scratch, so I am not sure what you

are doing wrong. I will research this and
put together a CP/M article in the next
issue to back up what Chuck says with
more details and other platform infor-
mation. I have several guides, but alas
they are not much help if you don’t
already know it all. Hold on as we are
planning several articles on changing
both CP/M and BIOS code, like adding
IDE drives. Check out Jay Sages col-
umn this issue, he mentions a program
for reading PCDOS disk formats. Thanks
again. BDK.

Dear BK,,
Enclosed is my check for Thanks.

Bye the bye, don’t let those who advo-
cate all manner of highest tech
doohickeys such as PALS, etc. convince
you to change your mind on the design
principles that you have set upon for the
magazine. At the very least, demand the
discrete logic equivalent accompany any
PAL type circuitry. Likewise, hang in
there on platform independent projects.
I for one, have stopped fooling with
strictly BUS oriented projects as I now
have too many disparate systems to want
such troubles. I may at any given time,
want to us¢ a peripheral with anything
from an 8 bit SBC to a DUAL processor
system to an IBM clone & some are
portable & some not. Also a number of
my systems are no longer available and
I don’t want to mess with them at the
board level. I also use Forth due to it’s
portability.

Yours, Duane L. Ruck, Lima, OH.

I am sticking by my position Duane. It
took a lot of talking, but I think everyone
sees my point of view NOW. I am still
waiting for a PAL article worth print-
ing! I am working on Language inde-
pendence now, then operating systems
after that. A long hard battle, but I think
1 am winning converts, especially after
MSDOS 6.0 came out and provided
nothing NEW for your money. Learning
is a hard and slow process. Stay inde-
pendent! Bill.

Mail to:
The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535, U.S.A.

The Computer Journal / #62

Real Computing

By Rick Rodman

PC-532 news, mail servers, et cetera
JPEG performance

Before I get into JPEG itself, let me
explain how I had to get there.

Moving files to the PC-532 is a little
strange. [don’t have Ethernet, and, to
my knowledge, dosdir, dosread and
doswrite don’t work with the PC-532
Minix. So, what I do instead is use
putdisk to write a file to a 1.44 floppy,
then put the floppy into the SCSI floppy
on the PC-532 and use ncat to get the
file. For example, for UNSSHAR.C, the
steps were:

On the PC:
putdisk a8 unsshar.c

On the PC-532: ncat /dev/fd0
2460 >unsshar.c

This works much better with larger files.
For example, an ‘‘sshar’’ format file
containing all of the JPEG source, plus
the uuencoded images, was 1,022,070
bytes.

Putdisk writes a file to a floppy starting
at head 0, track 0, sector 1. No file
system is used. Note in the example
above that /dev/fd0 is used to directly
access the floppy disk block by block.
This works for hard disks too. Will it
work for CD-ROM? It certainly may.
(Need a SCSI host adapter for your S-
100 or homebrew machine? Check out
issue #48, where Wayne Sung published
the whole thing.)

Anyhow, I haven’t gotten the JPEG soft-
ware working under Minix yet. I've
been having trouble with Minix’s make
program and the C preprocessor. More
bulletins as they come in.

The Computer Journal / #62

PC-532 news

Yet another Minix user who’s been try-
ing to port Unix software is Randy Hyde.
He’s been following a twofold track of
adding missing functions to the library
and recoding some of them in assem-
bler, for massive speed improvements.
He hopes to release his improved library
shortly.

In other PC-532 news, it appears that the
ETH-532 Ethernet boards are becoming
closer to reality. It isn’t clear whether
the 32GX32 chip used in this design is
still available; most of the NS32 chips
have, alas, been deleted from National
Semiconductor parts catalogs. It was
the best of all microprocessors; too bad
marketing (‘‘Intel Inside”) recapital-
izes philately.

Novell and Microsoft both take the ‘“Not
Invented Here’’ approach to standards,
so Novell has formulated ODI and Mi-
crosoft has formulated NDIS., Most net-
work cards today come with drivers for
both, since they don’t interwork well. 1
prefer NDIS, mainly because Novell still
doesn’t have a good Netbios. At any
rate, in the PC-532 world we hope to
avoid these pomposities and provide
TCP/IP and real, true Netbios, both
working under Minix. This may, de-
pending on circumstances, open the pos-
sibility of supporting X Window in the
near future.

Mail servers

Usenet (news and mail) users are the
poor stepchildren of the Internet. As
one of these, I haven’t been able to use
fip (file transfer protocol, part of TCP/
IP) to get any of the free software archived
on various sites throughout the net.

Lately, too, it seems like all of the free
software is being put on ftp servers.
Nobody posts (as news) much of any-
thing anymore. My guess is that this is
a result of the continuing concern over
net bandwidth. Unfortunately, it has
resulted in class divisions among the
Internet users.

In some cases, it’s possible to get soft-
ware by using a ‘‘mail server’’. These
are very cumbersome and difficult to
use. Often by the time you figure out
where something is and how to get it,
it’s been moved. It can take weeks.

Basically, how it works is like this. You
find a server where the software you
want is suspected of being, for example,
the “‘hobbes’’ or *“ftpos2”” archive. Next,
find out if that machine has a mail server
itself. If not, you might be able to access
it through an “‘ftp server’’ such as
“‘decwr]”. The server has an e-mail
address. Each one uses completely dif-
ferent, but consistently arcane, com-
mands, so you first need to send a mail
message with the subject “‘help”’, and
the first line of the message, too, saying
“help”’. Then wait for a reply.

It’s possible that “*help’” will not be the
correct command for getting help. If
not, the system will send a mail reply
telling you what the correct help com-
mand is. It won’t, of course, send the
help, so you have to send the new mes-
sage. Then wait for a reply.

Since the fip software is divided into
various directories, you need to know
what directory it’s in as well as the exact
filename. First, get the list of the direc-
tories. The command for doing this will
vary from server to server. Send the

message. Wait for a reply.

Now, looking at this list (assuming you
didn’t receive an error), pick out the
directory or directories you think might
have the software you want. Construct
a message containing the command to
list the directory and send it. Wait for a

~ reply.

If you’ve found the file you want, now
you can send a message containing the
send command for it. Wait for a reply.
If things go well, you’ll have the file.

The ftp server is more complicated. You
send a message to the ftp server contain-
ing commands which are somewhat like
the commands for a mail server - speci-
fying the directory, list commands, and
so on. For example, the following is a
message 1 sent to
*“ftpmail@decwrl.dec.com’”:

connect ftp-0s2.nmsu.edu

chdir /pub/uploads

binary

uuencode

get pmjpg095.zip

quit
You'll note I already knew the host (sys-
tem), directory and file.

Some of you will be saying, *‘What a
ridiculous process! It must never work!”’

- But it does - I have actually been able to
get two files from a mail server. I've
never been able to get anything through
an fip server, though.

Others might ask, ‘OK, smart guy, how
would you improve 1t?°° That’s a fair
question. 1 would make a single-mes-
sage query like, “‘If you have a file
matching this name or wildcard in any
directory, send it.”’ The sending system
should know whether the file is binary or
not. And if you don’t think it can be
done, I will be happy to write the pro-
gram.

Despite whatever faults it may have, the
Internet is a very good thing - a public
electronic marketplace - and any such
system or network will simply reflect the
foibles and conceits of the people who
construct, manage and use it.

Will the Real programming platform
please stand up?

Unix users have rightly criticized PC
platforms as being ‘‘stone-age’’ plat-
forms for programming. One example
is wildcards in filenames. Under Unix, if
you have a command line with a wildcard
in it - for example, “‘Is *.c’* - the oper-
ating system expands the wildcard for
you. You, as an application program-
mer, don’t have to worry about that.

CP/M didn’t do that, so neither do MS-
DOS nor 0OS/2, its intellectual deriva-
tives. Instead, each application program
that needs to do this must include code
for expanding wildcards. Most compil-
ers under CP/M, like BDS C, included a
“‘wildexp’” routine for expanding the
wildcards so you at least didn’t have to
write the code. However, compilers under
DOS and 0S/2 don’t even include that
small courtesy!

It’s really amazing that Microsoft DOS
is really up to version 6. Here’s a list of
glaring problems that we’re still dealing
with, ten years after the introduction to
the product: You can’t backspace past
the end of a line. The path is limited to
128 characters. The type-ahead is lim-
ited to ten characters. F3 doesn’t work
all the time. XCOPY has been buggy for
three major DOS versions - it still flakes
out on empty directories and mishandles
a single-directory source. COPY is still
almost devoid of modern features -
VMS’s COPY command could be stud-
ied if Microsoft is running out of ideas.
And people have been asking for years
for file sizes to be displayed with com-
mas. For example, my C: drive shows
“250068992 bytes free’’. Quick - is that
25 megabytes or 250 megabytes?

Microsoft says DOS 7 will be 32-bit,
multitasking, etc. Seeing the glacial pace
at which even the slightest improvements
don’t get made, I'm disinclined to be-
lieve them - especially since I remember
them saying the same things about DOS
4,

Such is the tunnel vision of the PC in-
dustry that pigs in a poke like Windows
NT are praised sight unseen - while re-
ally powerful packages like BSD-386 and

Linux are never even noticed. Oh well,
it’s hard to have fun when everyone’s
watching, anyway. :

From last time

I was discussing file archivers. Since
that time, I’ve modified my readtar pro-
gram to uvudecode and decompress as
described. 1 also have a version of LU
which runs on PCs. If these would be
helpful to you (all in source form of
course), drop me a note by any accept-
able technology.

Next time

Next time I hope to have those JPEG
benchmarks, and maybe some Group 3
and Group 4 ones as well. Walnut Creek
CD-ROM has produced a CD of Linux,
and I plan to give my initial review of
that. And how about accessing a CD-
ROM from Minix?

Where to call or write
BBS: +1 703 330 9049 (eves, fax during

the day)
E-mail: rickr@virtech.vti.com

To assist those in understanding what
Rick has said,] have reprinted this glos-
sary. This glossary came from GEnie
Unix section as ZEN.TXT. The entire
topic is from a book:

Zen and the Art of the Internet

A Beginner’s Guide to the Internet
First Edition

January 1992

by Brendan P. Kehoe

Should you want more information, |
suggest you either download this file, or
buy the book in your local bookstore.
BDK.

Glossary

This glossary is only a tiny subset of all
of the various terms and other things
that people regularly use on The Net.
For a more complete (and very enter-
taining) reference, it’s suggested you get

The Computer Journal / #62

a copy of The New Hacker’s Dictionary,
which is based on a VERY large text file
called the Jargon File. Edited by Eric
Raymond (eric@snark thyrsus.com), it
is available from the MIT Press, Cam-
bridge, Massachusetts, 02142; its ISBN
number is 0-262-68069-6. Also sce RFC-
1208, A Glossary of Networking Terms.

)

This odd symbol is one of the ways a
person can portray ‘‘mood’’ in the very
flat medium of computers-by using
“‘smilies.”’ This is ‘metacommunication’,
and there are literally hundreds of them,
from the obvious to the obscure. This
particular example expresses ‘‘happi-
ness.”” Don’t see it? Tilt your head to
the left 90 degrees. Smilies are also used

to denote sarcasm.

Network addresses are usually of two
types: the physical or hardware address
of a network interface card; for ethernet
this 48-bit address might be
0260.8C00.7666. The hardware address
is used to forward packets within a physi-
cal network. Fortunately, network users
do not have to be concerned about hard-
ware addresses since they are automati-
cally handled by the networking soft-
ware.

The logical or Internet address is used to
- facilitate moving data between physical
networks. The 32-bit Internet address is
made up of a network number, a
subnetwork number, and a host number.
Each host computer on the Internet, has
a unique address. For example, all
Internet addresses at Colorado State have
a network number of 129.82, a subnet
number in the range of 1-254, and a host
number in the range of 1-254. All
Internet hosts have a numeric address
and an English-style name. For example,
the Internet address for UCC’s CYBER
840 is 129.82.103.96; its Internet name
is csugreen. UCC. ColoState. EDU.

address resolution

Conversion of an Internet address to the
corresponding physical address. On an
ethernet, resolution requires broadcast-
ing on the local area network.

administrivia
Administrative tasks, most often related

The Computer Journal / #62

to the maintenance of mailing lists, di-
gests, ncws gateways, etc.

anonymous FTP

Also known as ““anon FTP’’; a service
provided to make files available to the
general Internet community--Anony-
mous FTP.

ANSI

The American National Standards Insti-
tute disseminates basic standards like
ASCII, and acts as the United States’
delegate to the ISO. Standards can be
ordered from ANSI by writing to the
ANSI Sales Department, 1430 Broad-
way, New York, NY 10018, or by tele-
phoning (212) 354-3300.

archie

A service which provides lookups for
packages in a database of the offerings
of countless of anonymous FTP sites.
archie for a full description.

archive server
An email-based file transfer facility of-
fered by some systems.

ARPA (Advanced Research Projects
Agency)

Former name of DARPA, the govern-
ment agency that funded ARPAnet and
later the DARPA Internet.

ARPAnet

A pioneering long haul network funded
by ARPA. It served as the basis for early
networking research as well as a central
backbone during the development of the
Internet. The ARPAnet consisted of
individual packet switching computers
interconnected by leased lines. The
ARPAnet no longer exists as a singular
entity.

asynchronous

Transmission by individual bytes, not
related to specific timing on the trans-
mitting end.

backbone

A high-speed connection within a net-
work that connects shorter, usually slower
circuits. Also used in reference to a
system that acts as a “*hub’’ for activity
(although those are becoming much less

prevalent now than they were ten years
ago).

bandwidth

The capacity of a medium to transmit a
signal. More informally, the mythical
“‘size’’ of The Net, and its ability to
carry the files and messages of those that
useit. Some view certain kinds of traffic
(FTPing hundreds of graphics images,
for example) as a ‘ ‘waste of bandwidth’’
and look down upon them.

bounce
The return of a piece of mail because of
an error in its delivery.

btw
An abbreviation for *‘by the way.”

client

The user of a network service; also used
to describe a computer that relies upon
another for some or all of its resources.

datagram

The basic unit of information passed
across the Internet. It contains a source
and destination address along with data.
Large messages are broken down into a
sequence of IP datagrams.

disassembling
Converting a binary program into hu-
man-readable machine language code.

DNS (Domain Name System)

The method used to convert Internet
names to their corresponding Internet
numbers.

domain

A part of the naming hierarchy. Syntac-
tically, a domain name consists of a se-
quence of names or other words sepa-
rated by dots.

dotted quad

A set of four numbers connected with
periods that make up an Internet ad-
dress; for example, 147.31.254.130.

email
The vernacular abbreviation for elec-
tronic mail.

email address
The UUCP or domain-based address that

a user is referred to with. For example,
the author’s address is
brendan@cs.widener.edu.

ethernet
A 10-million bit per second networking
scheme originally developed by Xerox
Corporation. Ethernet is widely used for
. LANs because it can network a wide
variety of computers, it is not propri-
etary, and components are widely avail-
able from many commercial sources.

FDDI (Fiber Distributed Data Inter-
face)

An emerging standard for network tech-
nology based on fiber optics that has
been established by ANSI. FDDI speci-
fies a 100-million bit per second data
rate. The access control mechanism uses
token ring technology.

FQDN (Fully Qualified Domain Name)
The FQDN is the full site name of a
system, rather than just its hostname.
For example, the system lisa at Widener
University has a FQDN of
lisa.cs.widener.edu.

FTP (File Transfer Protocol)

The Internet standard high-level proto-
col for transferring files from one com-
puter to another.

"FYI

An abbreviation for the phrase *“for your
information.”” There is also a series of
RFCs put out by the Network Informa-
tion Center called FYTs; they address
common questions of new users and
many other useful things. RFCs for in-
structions on retrieving FYIs.

gateway

A special-purpose dedicated computer
that attaches to two or more networks
and routes packets from one network to
the other. In particular, an Internet gate-
way routes IP datagrams among the net-
works it connects. Gateways route pack-
ets to other gateways until they can be
delivered to the final destination directly
across one physical network.

header

The portion of a packet, preceding the
actual data, containing source and desti-

10

nation addresses and error-checking
fields. Also part of a message or news
article.

hostname
The name given to a machine. (See also
FQDN.)

IMHO (In My Humble Opinion)
This usually accompanies a statement
that may bring about personal offense or
strong disagreement.

Internet

A concatenation of many individual TCP/
IP campus, state, regional, and national
networks (such as NSFnet, ARPAnet,
and Milnet) into one single logical net-
work all sharing a common addressing
scheme.

Internet number

The dotted-quad address used to specify
a certain system. The Internet number
for the site cs.widener.edu is
147.31.254.130. A resolver is used to
translate between hostnames and Intermet
addresses.

interoperate

The ability of multi-vendor computers to
work together using a common set of
protocols. With interoperability, PCs,
Macs, Suns, Dec VAXen, CDC Cybers,
etc, all work together allowing one host
computer to communicate with and take
advantage of the resources of another,

ISO (International Organization for
Standardization)

Coordinator of the main networking stan-
dards that are put into use today.

kernel

The level of an operating system or net-
working system that contains the sys-
tem-level commands or all of the func-
tions hidden from the user. In a Unix
system, the kernel is a program that
contains the device drivers, the memory
management routines, the scheduler, and
system calls. This program is always
running while the system is operating.

LAN (Local Area Network)

Any physical network technology that
operates at high speed over short dis-
tances (up to a few thousand meters).

mail gateway
A machine that connects to two or more
electronic mail systems (especially dis-
similar mail systems on two different
networks) and transfers mail messages
among them.

mailing list

A possibly moderated discussion group,
distributed via email from a central com-
puter maintaining the list of people in-
volved in the discussion.

mail path
A series of machine names used to direct
electronic mail from one user to another.

medium

The material used to support the trans-
mission of data. This can be copper
wire, coaxial cable, optical fiber, or elec-
tromagnetic wave (as in microwave),

multiplex

The division of a single transmission
medium into multiple logical channels
supporting many simultaneous sessions.
For example, one network may have si-
multaneous FTP, telnet, rlogin, and
SMTP connections, all going at the same
time.

network

A group of machines connected together
so they can transmit information to one
another. There are two kinds of net-
works: local networks and remote net-
works.

NFS (Network File System)

A method developed by Sun
Microsystems to allow computers to share
files across a network in a way that makes
them appear as if they’re “‘local’’ to the
system.

NIC
The Network Information Center.

node
A computer that is attached to a net-
work; also called a host.

NSFnet

The national backbone network, funded
by the National Science Foundation and
operated by the Merit Corporation, used
to interconnect regional (mid-level) net-

The Computer Journal / #62

works such as WestNet to one another.

packet

The unit of data sent across a packet
switching network. The term is used
loosely. While some Internet literature
uses it to refer specifically to data sent
across a physical network, other litera-
ture views the Internet as a packet switch-
ing network and describes IP datagrams
as packets.

polling
Connecting to another system to check
for things like mail or news.

postmaster

The person responsible for taking care
of mail problems, answering queries
about users, and other related work at a
site.

protocols

A formal description of message formats
and the rules two computers must follow
to exchange those messages. Protocols
can describe low-level details of machine-
to-machine interfaces (e.g., the order in
which bits and bytes are sent across a
wire) or high-level exchanges between
allocation programs (e.g., the way in
which two programs transfer a file across
the Internet).

recursion

The facility of a programming language
to be able to call functions from within
themselves.

resolve

Translate an Internet name into its
equivalent IP address or other DNS in-
formation.

RFD (Request For Discussion)
Usually a two- to three-week period in
which the particulars of newsgroup cre-
ation are battled out.

route
The path that network traffic takes from
its source to its destination.

router

A dedicated computer (or other device)
that sends packets from one place to
another, paying attention to the current
state of the network.

The Computer Journal / #62

RTFM (Read The Fantastic Manual).
This anacronym is often used when some-
one asks a simple or common question.
The word ‘Fantastic’ is usually replaced
with one much more vulgar.

SMTP (Simple Mail Transfer Proto-
col)

The Internet standard protocol for trans-
ferring electronic mail messages from
one computer to another. SMTP speci-
fies how two mail systems interact and
the format of control messages they ex-
change to transfer mail.

server

A computer that shares its resources,
such as printers and files, with other
computers on the network. An example
of this is a Network File System (NFS)
server which shares its disk space with
other computers.

signal-to-noise ratio

When used in reference to Usenet activ-
ity, signal-to-noise ratio describes the
relation between amount of actual infor-
mation in a discussion, compared to their
quantity. More often than not, there’s
substantial activity in a newsgroup, but
a very small number of those articles
actually contain anything useful.

signature

The small, usually four-line message at
the bottom of a piece of email or a Usenet
article. In Unix, it’s added by creating
a file a no-no.

summarize

To encapsulate a number of responses
into one coherent, usable message. Of-
ten done on controlled mailing lists or
active newsgroups, to help reduce band-
width.

synchronous

Data communications in which trans-
missions are sent at a fixed rate,

with the sending and receiving devices
synchronized.

TCP/IP (Transmission Control Proto-
col/Internet Protocol)

A set of protocols, resulting from ARPA
efforts, used by the Internet to support
services such as remote login (telnet),

file transfer (FTP) and mail (SMTP).

telnet

The Internet standard protocol for re-
mote terminal connection service. Telnet
allows a user at one site to interact with
a remote timesharing system at another
site as if the user’s terminal were con-
nected directly to the remote computer.

terminal server

A small, specialized, networked com-
puter that connects many terminals to a
LAN through one network connection.
Any user on the network can then con-
nect to various network hosts.

TeX
A free typesetting system by Donald
Knuth.

twisted pair

Cable made up of a pair of insulated
copper wires wrapped around each other
to cancel the effects of electrical noise.

UUCP (Unix to Unix Copy Program)
A store-and-forward system, primarily
for Unix systems but currently supported
on other platforms (e.g. VMS and per-
sonal computers).

WAN (Wide-Area Network)
A network spanning hundreds or thou-
sands of miles.

workstation

A networked personal computing device
with more power than a standard IBM
PC or Macintosh. Typically, a worksta-
tion has an operating system such as
unix that is capable of running several
tasks at the same time. It has several
megabytes of memory and a large, high-
resolution display. Examples are Sun
workstations and Digital DECstations,

worm
A computer program which replicates
itself. The Internet worm

(The Internet Worm) was perhaps the
most famous; it

successfully (and accidentally) duplicated
itself on systems across

the Internet.

wrt
With respect to.

11

The Z-System Corner
By Jay Sage

This column is coming to you from Is-
rael by the miracle of electronic commu-
nication. Bill Kibler, it seems, is catch-
ing up on the publication schedule for
TCJ. This is good news for readers but
not for me; I have come to rely on the
slippage. Just before I left for Israel, 1
learned from Bill that issue 62 was es-
sentially ready to go to press, but I had
been counting on writing my column
after I got back. You can easily under-
stand that things get pretty hectic when
planning an international trip, especially
when it involves making long-distance
arrangements for a Bat Mitzva celebra-
tion.

It looked as though I would miss this
issue, but, when Bill heard that I would
have electronic mail contact while I was
away, he encouraged me to write some-
thing short and send it along as an email
message. In particular, he suggested
that in view of many recent changes [
review the current Sage Microsystems
East (SME) product line.

A New Sales Approach

At the Z-Fest we held over the weekend
of the Trenton Computer Festival I an-
nounced major price reductions. Changes
in the economy in general and in gov-
ernment funding for scientific research
in particular have tremendously in-
creased the demands of my job at MIT.
Critical circuit testing during the weeks
of my vacation requires daily contact
with my colleagues. That’s why I ar-
ranged for an email account here in Is-
rael. With such work pressures I could
no longer find the time to produce cus-
tom orders in custom disk formats. So
I decided to make two changes.

On the one hand, I decided to limit the

12

disk formats supported to just two:
Kaypro DSDD and IBM 360K. The
former was the most popular true CP/M
format, and many people can deal with
the PC format in one way or another. In
the worst case, there are several people
(David McGlone and Elliam Associates,
to name just two) who will convert disks
for a modest fee. On the other hand, the
prices have been reduced to the lowest
level at which I can justify the time spent
to handle orders at all.

This was, in part, in response to a sud-
den and dramatic decrease in sales start-
ing at the beginning of this year. It looks
as though we may finally be coming to
the beginning of the end of 8-bit com-
puting as an area that can support active
new developments and commercial prod-
ucts. So one could regard the current
pricing as a kind of close-out sale. At
the new prices, you can buy an item just
for the fun of playing with, even if you
have no real, long-term use for the pro-
gram. Think of it as you would going
out to the movies or to dinner!

Operating System Extensions

The flagship products of the SME line
arc NZCOM and Z3PLUS. These are
versions of the Z-System that install
themselves automatically on top of the
existing CP/M operating system.
NZCOM is for computers currently run-
ning CP/M version 2.2, while Z3PLUS
is for computers running CP/M version
3, also known as CP/M-Plus. Each of
these products is now only $20, down
from the previous $49 and original $70.

There is no room here to describe what
Z-System is in any detail; that has been
the subject of most of my columns for the
last six years. Suffice it to say that Z-

System is a highly advanced operating
system that, while almost totally
compatiple with CP/M, has many fea-
tures more commonly found in main-
frame and minicomputer operating sys-
tems. Some of its features are unique
and better than anything found in any
other operating system I know of. The
basic goal of Z-System is to give users
more freedom: freedom to add new ca-
pabilities, to automate and simplify tasks,
and to perform tasks in alternative ways
that suit individual tastes.

Central to the power of the NZCOM
implementation of Z-System is the ZCPR
version 3.4 command processor. This is
the part of the operating system that
provides the direct interface between the
computer operator and the computer (the
other parts of the operating system serve
programmers). The source code for
ZCPR34 is not needed, as NZCOM al-
ready comes with several versions in
binary form that that NZCOM uses.
Some people, however, like to make
custom versions or modifications, others
Just like to have source code on prin-
ciple, and still others want it so they can
learn how the command processor works.
For these people, the source code is avail-
able as a separate product. Those who
have already purchased NZCOM from
SME can get it for $10; for others the
cost is $15.

There is also a replacement for the BDOS
(Basic Disk Operating System) part of
the operating system. Icall this product
ZDOS (Z-System DOS). It actually in-
cludes two slightly different DOS re-
placement modules, ZSDOS and
ZDDOS. You can use whichever one
you like and can even switch between
them.

The Computer Journal / #62

Both support file time-and-date stamp-
ing. ZDDOS does this using entirely
internal code; ZSDOS contains the basic
datestamping code but requires a small
external module with the clock interface
code. Both include the ability to locate
and use files that are not in the directory
area specified. The ZCPR command
processor does this for locating com-
mand (COM) files, but this cannot help
when progams use auxiliary files (e.g.,
WordStar with its OVR file or spell
checking programs with their dictionar-
ies). ZSDOS uses the space freed up by
moving the clock code out to an external
module to implement more varied and
extended methods of file searching.

Those are only the two most dramatic
features of ZDOS. Here is a list of other
features that apply to one or both ver-
sions: automatic disk logging when dis-
kettes are changed (no more control-C
required); fast logging of fixed (hard)
disks (done only once);, improved error
handling with plain-English error mes-
sages and reporting of the name of the
file involved, if any, support for the
archive bit for tracking modified files;
enhanced write protection; wheel secu-
rity protection; and larger files (32 MB)
and disks (2 GB). ZDOS is an excellent
piece of work that I highly recommend.
Its price used to be $75; now it is only
$30.

As a brief aside, I would like to mention
that the authors of ZDOS have come out
with a follow-on product that supports
banked memory. It is called B/P-BIOS
(Banked/Portable BIOS) and ZSDOS2.
SME will not be carrying it; if you are
interested, please contact Hal Bower, the
principal author, directly at 7914
Redglobe Court, Severn, MD 21144,
410-551-5922.

The most advanced and spectacular op-
erating system extension offered is
BackGrounder-ii, or BGii for short. BGii
adds multitasking capability to a CP/M-
2.2 or NZCOM system. It allows several
programs to be run independently. Two
of these programs can be any CP/M tasks
(for example, a text editor and an assem-
bler or compiler); a third program can be
chosen from more than a dozen ‘‘back-
ground’’ commands internal to BGii.

The Computer Journal / #62

The tasks cannot all run actively at the
same time. Only one performs active
computations; the others are suspended
in their current state, ready to be re-
stored to active status at the user’s com-
mand. BGii is now only $20.

One note of caution. BGii uses a “‘swap”
file on disk to save the complete ma-
chine state for the main task that has
been swapped out. The time required to
switch tasks is determined by the time
that about 100K of data can be exchanged
between this file and memory. A RAM
disk provides superb performance (my
SB180 switches tasks in about one sec-
ond). A hard disk is generally adequate,
since BGii is designed to optimize ac-
cess to the swap file. BGii is not recom-
mended for computers that have only
floppy disk drives, though it can be used
provided a system diskette with the swap
file can be kept in drive A at all times.
BGii’s internal commands require swap-
ping only 4K of data, and this can be
accomplished quite quickly even with a
floppy disk. A full task swap may take
several tens of seconds, but this is still
faster than terminating one task and start-
ing up another every time one wants to
alternate between programs.

The final operating system extension is
DosDisk, which implements a virtual
MS-DOS file system, allowing one to
use MS-DOS 360K diskettes directly on
a CP/M computer. DosDisk, unlike any
other CP/M interface to MS-DOS-for-
mat diskettes, has full support for DOS
subdirectories. It is also unique among
foreign-format support programs -- un-
der either CP/M or MS-DOS -- in that it
maintains time and date stamps when
used together with ZDOS. DosDisk al-
lows you to make full use of a DOS
DSDD diskette to carry data back and
forth between, say, a DOS computer at
work and a CP/M computer at home.
DosDisk is now only $15.

DosDisk, like BGii, requires a caution.
Because it depends on facilities in the
host computer’s BIOS (Basic Input/Out-
put System) code, it cannot be used on
all computers. Here are the computers
for which custom versions are available:
Kaypros equipped with TurboROM or
KayPlus ROMs, with CP/M or QP/M;

Xerox 820-I equipped with a Plus-2 ROM
and QP/M; Ampro Little Board; SB180
and SBI80FX with XBIOS; Morrow
MD3 and MD11; Oneac On!; and Com-
modore C129 with a 1571 drive. There
is a kit version for brave souls who are
ready to write their own interface drivers
(and possibly modify their BIOS).

Other Products

Well, this ‘‘short” column is already
not so short, so I will have to mention
the remaining products with even less
complete descriptions. The ZMATE text
editor has been described in a number of
my recent columns. The new version
has been completed, and the price has
been reduced to $20. Gene Pizzetta’s
revision of the manual still needs a little
editing. I hope it will be available in a
few months.

Another spectacular product is DSD, the
Dynamic Screen Debugger. This is a
full-screen debugger and Z80 simulator.
It is a fabulous tool for debugging pro-
grams under development or figuring
out how programs work. Price is now
$25.

Al Hawley announced at the Trenton Z-
Fest that he would reduce the price for
his excellent assembler/linker package,
ZMAC. It used to be $70 with a printed
manual and $50 with the manual as a
disk file. Now it is sold only with the
printed manual and for $45.

The BDS C compiler package, with both
Z-System and standard versions, is now
only $30. JetFind, a text-search utility
with support for grep (generalized regu-
lar expression parser) text specification
and support for crunched files and files
in libraries, has been reduced to $10.
XBIOS, a banked BIOS for SB180 and
SB180FX computers, is still available
(though no longer supported) at $30.
My ZCPR33 User Guide is still in print;
the price has been dropped to $10. It
still has useful information on the de-
sign philosophy behind ZCPR 3.3 and
34,

A number of other items are still avail-
able at their old prices. These include

Continued on page 17

13

- Letters and §-100 BUS

Dr. S-100

By Herb R. Johnson

This month, we have a brief tutorial on
buses for the hardware novice. From the
mailbag: more on hard disk controllers,
and stories of S-100 systems from around
the world! But first, some personal
events....

Moving, Mail and Messages

My wife and I bought a house recently
and moved in at the end of May. Of
course, we are still unpacking at the end
of June. In fact, T pulled my back last
weekend whilst scrambling through my
S-100 system collection in the garage.
My pain is your gain, since I now have
some time to write my column! You
might also take advantage of my grief at
moving hundreds of pounds of systems
by relieving me of a few of them!

Please note that I am stili using the com-
mercial PO box, namely CN 5256 #105,
Princeton NJ 08543, but my new phone
number is (609) 771-1503. You can also
contact me over the FidoNet
CPMTECH conference as ‘“Herb John-

9

son.
Tutorial Topic: What is a Bus?

Regular readers of this column are fa-
miliar with the S-100 bus, either as past
or as present owners of systems that use
this 100-pin interconnection ‘‘standard.”’
But a lot of readers may own systems
that do not offer a ‘‘bus’’ to plug new
devices into, or may not know what a
bus provides to its users.

I particularly want to provide those read-
ers who are unfamiliar with computer
bus architecture some idea of what is
going on when we talk about buses using
terminology such as ‘‘timing problems,”’
“‘what is its address,”’ ‘‘wait states,”’

14

and so on. Like most jargon, it makes
sense once you see the principles.

For an extensive review of the S-100
bus, I refer readers to my articles in The
Z-Letter issues #11 and #13, ““What is
the S-100 bus to me?’” which describes
the S-100 bus in more detail. Most buses
are based on a particular processor’s tim-
ing signals. A convenient reference for
typical processor timing signals is any
Z-80 hardware manual, or a manual for
almost any processor.

Why have a bus?

From the beginning, users of computer
systems wanted to plug devices into their
computers that were not anticipated by
the computer’s designers. There are two
ways to provide connections between a
device and a computer. The designer
can provide a standard single-device
interface, such as a serial or parallel
interface, which are common standards
across several computer manufacturers
but are limited in speed or response. Or,
they can provide a general interface or
“‘bus’’ that is faster, with multiple chan-
nels or “‘addresses’’ to selectively access
each device, but with a common data
path and control signals for all devices
to monitor.

Many designers have chosen to provide
buses to facilitate their product’s expan-
sion. By contrast, the designers of the
early Macintosh computers wanted to
keep users OUT of their box, so Apple
chose NOT to use a bus! The only other
reason not to provide a bus is to save
money (a bus requires extra chips, and
connectors, and circuit board space),
especially on specialized systems which

are typically ‘‘upgraded’” by complete
replacement.

Almost all computer buses feature sig-
nals for address, data and control. Ad-
dress lines are a set of wires with signals
that at a certain time contain a unigue
pattern which is recognized by a specific
device. Data lines carry another set of
signals that contain a pattern of infor-
mation to be sent to or received from a
specific device, which is referred to or
‘*addressed’’ by the address lines. Con-
trol lines carry yet another set of signals
that provide timing information about
the presence of address and data signals,
so that a device knows ‘‘when’’ to look
at the address and data lines and * ‘what”’
to do with them at that time.

Reads and writes

If your CPU or processor intends to
“read’’ data from a device, it must first
set up the address lines with the address,
then tell the “‘addressed’ device to put
its data on the data lines to be ““read.”
The processor must read the data lines
while the device holds the data lines
active, then tell the device to release the
data lines. Finally the processor releases
the address lines. The control lines are
used by the processor to communicate
these events to the device,

Again, the address lines are the first and
last to be active, with the data lines ac-
tive in between and the control lines
marking the times at which these events
occur. We show these events with “‘tim-
ing charts,”” which represent some or all
of each group of signals as a bar graph,
with the x-axis (left to right) represent-
ing time and the y-axis (bottom to top)

The Computer Journal / #62

representing that a timing event is ac-
tive (top) or inactive (bottom).

The following is a timing chart for a
generic read operation on a bus:

ADDRESS . 1
DATA o T i

© READ e T e

events 1 2 3 4 5 6

The sequence of events is very impor-
tant! First, the address lines must have
the correct address information on them
(event 1) and the corresponding signals
must take time to adjust or “‘settle,”’ as
the voltage levels on the lines cannot
change immediately; plus the circuits of
the device must process these signals.
By event 2, the device has had time to
become ready and the processor can send
out the READ signal. The device can
detect the leading (start), rising edge of
the signal and read the address lines to
know that IT is the selected device and
it is selected to be read. By event 3, the
device has processed the READ signals
and put its data out on the data lines.
The processor waits until event 4 to read
the data lines by using the falling, trail-
ing (or end) edge of the READ signal.
The device holds the data lines active
(holds the correct data) until event 5,
~ giving the processor just enough time to
complete the read. In addition, the pro-
cessor holds the address lines active a
little longer until event 6.

(For the S-100 bus, there are several
signals to mark these events. MREQ, a
memory request control signal, occurs
from before event 2 to after event 5 to
define the entire memory cycle. PSYNC
is a timing signal that is active briefly to
mark event 2, the start of the read com-
mand. PDBIN is the timing signal cor-
responding to the ‘‘read”’ signal de-
scribed. The status signal SMEMR for
““memory read”’ is not described, but is
timed similar to MREQ and indicates
the processor status. The S-100 input
data lines are DIO through D17, and the
address lines are A0 through A1S.)

The process of writing data is similar,

but now it is the processor that puts data
on the DATA lines. Consequently, the

The Computer Journal / #62

data lines are active early, before the
WRITE signal, so that the device has
time to read the data:

ADDRESS —
DATA _____I——————I

WRITE l l

events 1 2 3 45 86

Typically the processor puts both ad-
dress and data on the bus at event 1 and
data at event 2, makes the WRITE sig-
nal active at event 3, holds address and
data “‘steady’’ for the write at cvent 4,
and releases both data and address lines
at events 5 and 6 respectively.

(Again for the S-100 bus, there are sev-
eral signals that mark these events. The
MREQ control signal occurs from be-
fore event 2 to after event 5 as before.
PSYNC is also active briefly to mark
event 2. PWR or MWRITE is the tim-
ing signal corresponding to the “‘write™’
signal described. The status signal SWO
is longer in time than PWR, occurring
from event 2 to event 5. The S-100 out-
put data lines are DOO through DO7,
the address lines are A0 through A15))

A brief on other bus signals

How does the bus keep these ““events™
in sequence? First, the processor pro-
vides most of the control signals that
represent these events. Secondly, there
is also a “‘universal timing source’’ or
CLOCK signal on the bus that all de-
vices can use to reference the timing of
events,

Not all reads and writes are equal. Some
devices are strictly memory to hold pro-
grams, some are I/O (input and output)
devices. In addition, some events require
delays or wait states from the processor,
so the read and write signals are
““stretched’” or extended longer in time.
Also, some processors provide informa-
tional signals or status signals to de-
scribe the processor’s actions. Not all
buses have the same set of signals. For
example, buses favored by designers of
computers using the Motorola 68000
series processor have no *‘I/O’’ status or

control lines, as all devices are addressed
as locations in memory.

A bus also provides a convenient source
of power, so there are several lines de-
voted to DC power. An interesting note
about the S-100 bus is that these DC
power lines are unregulated and may
drift around a volt or two. Voltage regu-
lators on the card turn the +7 to +9 volts
(nominally +8 volts) on the bus into +5
volts for logic power; the same occurs
for plus and minus 18 volts, to +/- 12
volts.

Finally, for special events that occur at
the device side of the bus instead of the
processor side, there are lines for inter-
rupt signals which require the processor
to perform functions controlled by soft-
ware ‘‘interrupt handlers.”’

Particulars for the S-100 and IEEE-
696 bus

The original S-100 bus, shown in past
issues of TCJ in its centerfold of the
IMSAI CPU and front panel, is distin-
guished by 8 data read and 8 data write
lines; 16 address lines (2**16 or 64K of
address space); several control lines for
read, write, interrupt acknowledge; and
several status lines for 1/0, stack,
memory, wait states, and so on.

On the more advanced IEEE-696 bus,
the data lines DO0O-DO7 and DIO-DI7
can be temporarily combined into one
16-bit bidirectional bus, if the addressed
device can use them. With the control
line SIXTEEN, the device can tell the
processor that a read or write can be
performed on all sixteen data lines. In
addition, the IEEE-696 expands the
number of address lines to 24.

Letters

I’ve accumulated many letters over the
last months, so I'll try to catch up here.
Please contact these people if you can
help them out, or to at least offer them
moral support. I'd appreciate a copy of
the correspondence for future reference.

Rolf K. Taylor has a few Osbome 1
parts and a Dynabyte S-100 system with

15

some Morrow/Thinker Toys and
Dynabyte cards on an ‘‘as-is”’ basis.

Robin R. Whitten of Santa Ana CA is
looking for some 8" IMDOS disks for
his IMSAL I think I have a few..

Michael Griffin of Tillsonburg, Ontario

~in Canada has a Compupro 8/16 with a
harddrive but without docs, and is look-
ing for help and information.

Chris Christensen of San Bruno, CA
has a Compupro CP/M-80 system as part
of his “‘large collection.”” He wants to
implement keyboard buffering in his
BIOS:

“There is a file included with
Compupro’s CPM version ‘N’ called
HMX210.com that, I believe is supposed
to do this, but when I run it I get the
error message ‘mismatch between base
of CBIOS code area and assembled load
module base address’. I'm not an expert
at modifying the operating system so
I’m not sure what this means or how to
go about solving the problem. I’'m also
wondering what was the last version of
CP/M-80 released by Compupro...I have
heard of versions up to ‘“T". There is no
one at CompuPro any more that has any
information about CP/M-80.

- ““‘Also, to leave the 8-bit world for a
moment, I recall that Dynacomp once
sold a version of UNIX for the CompuPro
with the CPU 68K board. I heard that
there were efforts to make this available
again. Do you know anything about it?
I would like to hear from other people
who still use CompuPros, especially
anyone who has upgraded some of the
older single-user systems.’’

Todd Silk of Hayden ID, a regular cor-
respondent, is in the process of restoring
an Altair he just purchased: ‘‘The Altair
showed up but it was repainted dark
brown. Do you have a picture or drawing
of what it is supposed to look like? It’s
a turnkey model, with what looks like
IBM blue and tan underneath the paint.
The front must have been replaced. The
cards in it include a FDC-1 and a 64K
memory card by Teletek, and it scems to
be a much better machine than the SD
Systems based system that I have. ‘I

16

really enjoy your articles, I hope you can
keep it up!”’

Roger L. Foco of Hightstown NIJ, was
kind enough to send me some Forth
books along with a request to spread the
word. He has an IMS $-100 system (Z-
80) for sale, including 8-inch drives,
docs and CP/M software. Call him or me
for a list and details.

Thanks to all who write or call me!
Between my move, my (unggh!) back
and my day job, it’s tough to write back
and respond promptly, but be patient,
I'll get to ya!

Hard Drive Interests

A few columns back I asked if anyone
was interested in a new hard disk con-
troller for the $-100 bus. Among a few
positive responses, Paul Herman of the
Z-100 Lifeline reminded us that he sells
a SCSI controller for that (IEEE-696)
system for $210, plus $60 for the soft-
ware. Here is some follow-up correspon-
dence:

Alberto Girlando, a professor at a uni-
versity in Parma, Italy, is looking for
boards and disk drives for his NorthStar
Horizon system. He’d like an IDE con-
troller too, but he hasn’t *‘the slightest
idea of what a right price might be!”’

Rick Rodman of Manassas VA (of TCJ’s
Real Computing) writes:

**A SCSI host adapter for $210 is way
too high! It can be done with a single
NCR [the manufacturer’s name - Herb]
chip and some miscellaneous decoding.
In fact, it may even be possible to con-
nect the SCSI bus to an 8255 PIO {Intel
parallel I/O chip] on some boards. I tried
to do this about ten years ago when it
was SASI and ran into some timing prob-
lems, but SCSI has looser time constraints
than SASL

I have some ACT hard disk control-
lers, and I think some of the host adapt-
ers [which interface the controllers to
the host computer]. These controllers
are all LSTTL [low power fast TTL],
very big and power-hungry, but they are
documented and easy to connect. I used

to do software consulting connecting
these to various machines where we
didn’t have BIOS source, such as the
Osborne, Zorba and Otrona. They have
8 read-write registers that require 3 ad-
dress lines to access, so if I could get 12
or so bidirectional TTL bits, I was there.
The software used a tiny BIOS called
OBIOS, which loaded itself below the
original BIOS.”

Rich would be interested in selling and
helping others with these controllers, and
he also has a number of S-100 boards for
sale. “‘I've currently got three S-100
systems running. First, my BBS which
is an all-IMS [Industrial Micro Systems]
with a 21MB SMD hard drive I turn on
sometimes and dual floppies, running
CP/M, CP/M-Plus, or MP/M as I desire.
Second, another IMS system in an Inte-
grand box. Third, a Compupro CPU-
32016 with 1IMB of RAM (tada!) using
a Konan David Jr. [hard drive control-
ler?] and a Cromemco 16FDC, running
Bare Metal. I think I bought the 16FDC
from you a few years back...

““‘Oh, another thought: Ten megabyte
8’ Bernoulli are showing up in big stacks
at hamfests at giveaway prices. I have a
PC interface board for one of these, and
it doesn’t have any LSI [big chips] on it
atall - just 21 LSTTL chips, two resistor
packs and a DIP switch. Maybe folks
could use those for their hard drives?
Documentation would be a problem.”

I seem to recall an article on interfacing
10MB Bernoulli drives that was not too
difficult to implement: maybe it was in
TCJ or Micro Cornucopia. Anybody
know? By the way, Rick, you are the first
person I know with a working and com-
plete 32016 system! For the rest of us,
this refers to a National Semiconductor
32-bit processor that was a hot topic a
few years ago. In fact, I cannot think of
any major processor that was not avail-
able for the S-100 bus!

References

Copies of The Z-Letter S-100 articles in
issues 11 and 13 can be obtained from
Lambda Software Publishing, 149
West Hillard Lane, Eugene OR 97404-
3057. Call (503) 688-3563 for details.

The Computer Journal / #62

The Z-Letter supports all Z-80 compat-
ible systems and is a great source for
current (1) developments in Z-80 based
systems and software.

FidoNet is an international network of
bulletin board systems (BBS) that carry
many message areas or ‘‘echos’ that
. you can participate in, including the
CPMTECH echo. Contact a local BBS
to get a list of systems or to ask the
system operator (SYSOP).

Rolf K. Taylor, RFD#1 Keeler Land, N.
Salem NY 10560-9705 (914) 669-5421.

Prof. Alberto Girlando, 1st Chimica
Fisica, Universita Degli Studi Di Parma,
43100 PARMA, Italy.

Robin R. Whitten, 909 E Camile St,
Santa Ana CA 92701 (714) 550-1005.

Michael Griffin, Apt 207, 182 Lisgar
Ave, Tillsonburg Ontario Canada N4G
4L2.

Charles Christensen, 2780 Concord Way,
San Bruno, CA 94066.

Rick Rodman, 8329 Ivy Glen Court,
Manassas VA 22110.

Todd Silk, 10721 Oak, Hayden ID 83835.
Roger L. Foco Sr, CCP, 202 Maxwell

Ave., Hightstown NJ 08520 (609) 448-
6826.

Z-System Continued
the SLR assembly-language tools, the
MEX telecommunication programs that
I covered extensively in TCJ columns
some time ago, and several Z-System
IOPs (Input/Output Packages).

Closing Comments

In closing, I would like to put in a plug
for 4DOS. This is a superb command
processor replacement for MS-DOS com-
puters. If, like many 8-bit hobbyists, you
also use MS-DOS computers, then you
should replace Microsoft’s highly me-
diocre COMMAND.COM with

4DOS.COM. If you are used to Z-Sys-
tem on your 8-bit computer, you will
finally feel that the DOS straight-jacket
has been removed. 4DOS provides what
DOS should have offered from the be-
ginning. SME sells 4DOS at the slightly
discounted price of $65.

For the next issue of TCJ I hope to present
the material I originally planned for this
issue on how to implement highly so-
phisticated automation using Z-System
or 4DOS and ZMATE or PMATE. This
is a technique I developed last summer
to allow my 486 computer at work to
carry out a complex series of electronic
circuit simulations while I was away on
vacation for a month. The work would
even resume automatically after a power
failure!

CLASSIFIED, FOR SALE and WANTED

Amstrad (¢) PCW SIG: $9 for 6 bi-
monthly newsletters dealing with the
most popular CP/M machines still in
production. Learn where to buy 3"
discs, how to add 3.5 and 5.25 drives
and where to buy the 8 MHz Sprinter
board with room for 4 Meg of RAM.
Make checks out to Al Warsh, 2751
Reche Cyn Rd #93, Colton, CA 92324.

For Sale: GIMIX 6809 SS-50 floppy
disk controllers. Have six to sell at
$25 each plus shipping ($5). Bill at
TCJ (800) 424-8825.

FOR SALE: Collector's Guide to Per-
sonal Computers and Pocket Calcu-
lators. Prices and illustrations in-
cluded. 336 pages. $14.95 plus $2.00
shipping. Fred Harfield, Box 52466,
New Orleans, LA 70152. Digitial
Cottage BBS (504) 897-6614, help,
support, sales, of old systems.

The Computer Journal / #62

NEEDED: CRT for HP87, mine's gone
out. Jim Zikes, 808 1/2 Maint St., Quincy,
IL 62301.

WANTED: DOCS/SOFTWARE for
MICROLOG Z80B XT Board, have
just the board. Bill at 7CJ, 800-424-
8825,

Willing to Help ZX81 users find items.
Plenty for sale in England. Contact T.
James, 12 Deacons Court Copmanthorpe,
York Y02-3TR England. ZX-81's go for
about $30/50US.

NOW AVAILABLE: 96TPI drives,
TEAC, Use in KAYPROS, $12.00 +
Shipping, Mr. Kaypro, Chuck Stafford
at (916) 483-0312 (eves).

Coming in September, CPM CDROM
Available from Walnut Creek COROM
1-800-786-9907.

The Computer Journal classified sec-
tion is for items FOR SALE. The price
is based on Nuts & Volts rates. If you
currently have a Nuts & Volts ad just
send us a copy of the invoice and we
will print the ad for the same price.

Classified ads are on a pre-paid basis
only. The rate is $.30 per word for
subscribers, and $.60 per word for
others. There is a minimum $4.50
charge per insertion.

Support wanted is a free service to our
readers who need to find old or miss-
ing documentation or software. Please
limit your requests to one type of sys-
tem. Call TCJ at (800) 424-8825 or
drop a card to TCJ, P.O. Box 535,
Lincoln, CA 95648.

17

REMINISCING and MUSINGS

By Frank Sergeant

ONE FORTH FITS ALL? or PLEAS-
ING ALL THE PEOPLE ALL THE
TIME

Here is a bit of historical reminiscing
which missed the deadline for the anni-
versary issue of TCJ (#60).

It all begin in 1989, I suppose. I was
shipping v1.1 of Pygmy Forth for the
IBM PC by August, 1989. Did I ever
release av1.0? I cannot remember. V1.1
was followed quickly by v1.2 in January,
1990. Then v1.3 appeared in Septem-
ber/October, 1990. About two years later
(October, 1992) 1 released v1.4 with
many improvements. It’s been a long,
hard four years.

I’ve had a lot of fun developing Pygmy
Forth and offering it as a shareware sys-
tem with no required minimum payment.
The shareware disk includes the execut-
able file, the full source code, and the
manual. Thus it was a fully open sys-
tem, not crippled in any way. Atfirst, to
encourage shareware °‘registration’” I
offered a Bonus Disk and a printed Glos-
sary for $25. The disk contained shadow
blocks commenting, block by block, on
the source code. It also contained double
(32-bit) and quad (64-bit) math routines,
interrupt-driven serial routines, etc.
Supplying the printed Glossary was the
most tedious part of processing a bonus
order. So, finally, as of version 1.4 |
stopped offering the Glossary and of-
fered the Bonus Disk alone for $15. The
Glossary is not really needed. V1.4 has
VIEW which pops you into the editor at
the source code of the desired word, and
ctrl-A switches between the source code
block and the corresponding shadow
block. The Bonus Disk still contains the
math and serial port routines as before,
but now contains copies of various Forth

18

articles I have written. It even contains
a 68HC11 assembler, written in Forth,
that can run on a 68HC11 orona PC. I
am much happier to copy a disk and
mail it inside a folded sheet of cardboard
for $15 than to print a Glossary and ship
it and the disk for $25. But, I have
appreciated every one of those Bonus
Disk requests. I no longer send the
shareware disk for $5. If you want it
from me, you must order the bonus disk
for $15 (which includes the latest ver-
sion of Pygmy). Alternatively, the
shareware version is available from
GEnie, various shareware houses and
BBSs, and via ftp. The Forth Interest
Group makes it available for $20. At
first I was concerned that this wasn’t
quite right: $15 to me for the bonus disk
plus the shareware version, versus $20
to F.1.G. for just the shareware version.
On the other hand, I see their point; I
don’t want to bother with mailing a disk
for $5 or so.

Let’s face it, Forth has a small (but en-
thusiastic) following. Within Forth,
Pygmy has an even smaller (but enthu-
siastic) following. Monetarily speaking,
I should have been developing a C li-
brary or digging ditches. This project
was not a good choice from the stand
point of making money. I suppose I
have approximately broken even, as long
as we do not count my time. I made it
a point to send each new version to every
person who had previously ordered ei-
ther Pygmy or the Bonus Disk from me.
For example, if someone sent me $5 for
a copy of version 1.1, I not only sent him
adisk with 1.1, but 3 more disks over the
years as versions 1.2, 1.3, and 1.4 be-
came ready. If the post office returned
it with an address correction, well, I
mailed it once more. I have also spent
a fair amount time answering questions,

making suggestions, tracking down hard-
ware incompatibilities, and responding
to suggestions. My goal has been to give
superb service, and I think I've succeeded
in this.

Has it been worth it? Yes, I think so --
not in money but in other ways. I've
made some good friends, most of whom
I've never seen. 1 enjoyed exchanging
ideas about what a Forth should be. I've
enjoyed the _satisfaction_ of feeling 1
have produced something that at least
some people appreciate. I’ve heard from
people from all over the world. It is such
a pleasure to receive a comment such as
““My favorite feature of PYGMY 1.3 is
its simplicity. In most cases, even - I -
can understand the inner workings.’” or
“I just received your Pygmy FORTH
v1.3 from the FORTH Interest Group
and am quite delighted. I have been
developing high performance instru-
ments using the RTX-2000 .., Thus your
FORTH felt comfortable immediately.”
or from Japan, ‘‘Pygmy is fine.. it makes
me happy to touch.”” Many tell me how
they’ve successfully customized it and
send me examples of their code and sug-
gestions for further improvements.

From time to time bulletin board postings
(the Forth Roundtable on GEnie, etc.)
have discussed whether public domain
or shareware Forths have hurt ““Forth.”’
First of all, even though I am a Forth
enthusiasist, I do not believe Forth has
any feelings or is capable of being hurt
in any way. Ido not feel much compul-
sion to “*Save Forth.”” I don’t intend to
present the arguments impartially here
(you can read them yourself on GEnie).
Rather, | intend to point out what I sce
as an interesting contradiction. It ap-
pears that it is argued both that
shareware/PD Forths are so _bad_ they

The Computer Journal / #62

hurt Forth and they are so _good_ they
hurt Forth. (To be fair, I don’t suppose
the same person offers both arguments.)
You see, if some poor perspective Forth
user is exposed to a bad Forth imple-
mentation, he may give up Forth for-
ever, attributing the trouble to the lan-
guage instead of the implementation. On
the other hand, if good sharcware/PD
Forths are available cheap, then he has
no need to spend big bucks buying a
system from a vendor. Thus the vendor
fails to receive the money which would
lead to greater advertising of Forth and
the development of better Forth systems.
So, what do you think, is Pygmy Forth
hurting Forth? I certainly hope not. If
so, that’s too bad, because I’m not going
to withdraw it.

I've made mistakes. Version 1.4 allows
the stacks to be placed either in the main
segment or in a separate segment. The
latter allows very large stacks. But, large
stacks are usually not needed in Forth. I
shipped v1.4 with the stacks in a sepa-
rate segment. This ordinarily doesn’t
hurt anything, and it is easy enough for
the user to change, but I should have
shipped it with stacks in the main seg-
ment.

Worse than that, I modified the video
routines to use BIOS calls instead of
direct memory writes. My goal was to
eliminate problems for weird systems
(AT&T 6300 for example). Work on
previous versions was done on my trusty
old XT. Unfortunately I used a ‘386
system while working on v1.4. I was
delighted with how fast the BIOS rou-
tines were and figured any tiny slow-
down (although unnoticeable to me) was
worth the increased compatibility. Too
late I finally ran v1.4 on an XT and was
disappointed with the video speed. This
version is still very usable though. And,
the I/O routines are vectored, so it is easy
to replace them with faster routines. So,
a project for the near future is a version
of EMIT to use direct writes. Soon,
soon. Then you can choose BIOS for the
greatest compatibility or direct writes
for the greatest speed.

At first I had no particular constraints

on how I created Pygmy. I could do it
my way. Then a user base gradually

The Computer Journal / #62

came into existence. I do not want to
disappoint them. They argue for a change
and I feel compelled to listen. Often
they are right and I _still_ refuse to do it
their way. This convinces me I am not
completely rational, but then again, who
is? There is more to developing a Forth
system than logic. There is also beauty.
There is also fatigue.

Is Pygmy perfect and why do I keep
harping on this? Because I would like it
to be. But I do not think it needs to be.
It may be that it is excellent for certain
purposes and unsuitable for others. Such,
I think, is the case with every language
and every tool and every person. One of
its strong points is its small size and
understandability. The whole system
can run from a single floppy. This goes
against the modern trend of
requiringmulti-megabytes of RAM and
harddisk space. With it you can produce
turnkey applications under your com-
plete control, which you can understand.
I think it takes a lot less faith to use a
system you can master, and this is good.

At first I resisted adding textfiles for
loading source code, but changed my
mind for vi.4. An argument by Brad
Rodriguez convinced me. What I heard
was that it didn’t matter whether _he_
wanted textfiles, his _clients_ wanted
them! Oh, OK. That I can understand.
So now you can load source code from
either blocks or textfiles. Also, you can
regen Pygmy to remove this feature if
you don’t want it. I’'m glad I did this
even though I still do all my own coding
in blocks. But, now, I can write an
application that FLOADs a configura-
tion file the user creates with any old
text editor -- no need to try to force him
to use blocks and a block editor, So,I'm
a convert to textfiles, sort of.

Some people suggest that Forthers spend
too much time developing new Forth
systems and not enough time actually
doing something useful with them. Per-
haps I am guilty of that. I do use it,
though, for various utility applications
for my own use, such as a PCB layout
program and custom LaserJet font edi-
tor. Unfortunately these are “*quick and
dirty’’ and nowhere near being releasable
products. Pygmy runs the PC portion of

the EPROM programmer system I de-
veloped. Pygmy is at the heart of a bond
and money market calculation program
I wrote and maintain for a client. The
shell is still in BASIC, a remnant from
many years ago, but I am much happier
working on the Forth part of the system.
The Forth development goes much faster
and is much more comfortable. I hope
it will eventually replace the BASIC part
completely.

MUSING ABOUT

I’ve had a number of things on my mind
lately to talk to you about. T’ll express
some ideas about nearly everything from
EPROM programmers to education, and
hope to hear your ideas and suggestions.

Some Come Loudly

Yesterday I couldn’t even spell Com-
puter Science ...

I am tickled pink to announce that on
May 15, 1993, Southwest Texas State
University (SWT) conferred upon me
the degree of Bachelor of Science in
Computer Science, summa cum laude. I
hope you will forgive me for saying it,
but who else can I tell? It wasn’t just
summa cum laude, it was a 4.0 SWT
GPA (grade point average) on 82 semes-
ter hours on a 4.0 scale. I am 46 years
old, so my advisor says I've been on the
“30-year plan.” I started out in Ac-
counting many years ago at the Univer-
sity of Texas, where, in my foolish youth,
I often made far less than all As.

I have to have done this for fun, as [
don’t see how it is worth any money to
me. I’ve worked in the computer field
for many years now. Most of the time as
a contract programmer, working on busi-
ness applications in IBM (or Univac)
mainframes in COBOL or assembly lan-
guage. As the years have passed, more
of my work has been done on micros
(mostly IBM PCs) and I've used Forth
whenever possible. I haven’t worked at
a ““straight’” job in many years and don’t
expect to start now. Starting back to
school a few years ago has given me an
interesting glimpse into the academic
side of computing. First, I was surprised
at how serious my fellow students take

19

their studies. I thought SWT was sup-
posed to be a party school, but it sure
isn’t in the Computer Science (CS) De-
partment. The professors are accessible
and knowledgeable, but that doesn’t
mean they all teach well. The degree
isn’t called a BS for nothing. 1 suppose
employers see the degree as proof there
_1s no limit to the amount of BS you will
put up with.

Still, I've had enough fun with it, and I
enjoy the internet access enough, that
I’'m continuing on into graduate school
at SWT. The CS department has asked
me to teach four Intro to Computer Ar-
chitecture labs and two C Programming
labs next fall. There has to be some
humor in me teaching C Programming
labs! The Architecture labs bring me to
my next subject.

Programmable Logic Devices (PLDs)

I agree with Bill that 7CJ construction
articles shouldn’t rely on PLDs (PALs,
GALs, etc.) exclusively. They should at
least show the logic in standard gates,
even if PLD details are also provided.
The SWT lab uses regular TTL and LS
TTL (e.g. 7400 or 74LS00 quad 2-input
NAND gates). They stand up well even
under fairly rough handling. Ithink I'll
suggest students buy their own personal
plastic breadboards and their own chips,
do the assignments at home, and bring
the results into the lab for discussion,
examination, and troubleshooting. I
think most of the time spent _wiring_
the chips together is wasted time as far
as learning goes. The advantage of us-
ing SSI (small scale integration chips
such as the AND, OR, and NAND gates)
and MSI (counters, multiplexers) is you
get to see their interconnections. This
helps in understanding what is going on,
compared to merely entering a Boolean
equation into a PLD compiler. I think
all the logic buried in the PLD chip is
too invisible and looks too much like
magic. With the separate chips you can
put a logic probe on each gate’s inputs
and output and see what is going on. For
my own use my choice is 74HCxx. These

20

are CMOS chips with the same pin-outs
as the corresponding TTL chips.

In spite of that, I am interested in using
PLDs to some extent in the Iab. If any-
one has any opinions on how to go about
this, especially the cheapest way to go
about it, please contact me with your
suggestions. 1 may build my own PLD
programmer, similar to the Bare Bones
EPROM programmer I have designed.

Bare Bones EPROM Programmer

Bones, as [call it, fits on a 3" x 3" PCB
or can be wire-wrapped or built on a
plastic breadboard. It programs 2716,
2764, 27128, and 27256 type EPROMs.
The circuit requires two ICs; a 4049 hex
inverter and a 68HC11 micro. It con-
nects to a MS-DOS PC via a serial cable.
Software running on the PC controls
Bones, presenting a menu of options and
allowing copying to and from an EPROM
and the PC’s disk, etc. [sell plans and
software on an MS-DOS diskette for $15
(in the US) and sell parts (excepts sock-
ets, etc.) for $25. I'bring this up in order
to discuss Bill’s topics of platform inde-
pendence and serial interfaces. Since
the hardware part of Bones has a serial
interface, in theory it could be controlled
from any host computer with a serial
port. However, a lot of the convenience
and comfort of the complete system is
the software which currently requires
MS-DOS. On the one hand, I don’t see
this as a major limitation, because a PC
of some sort is available to nearly every-
ong, even if you borrow the use of one at
a local college whenever you need to
burn an EPROM. Even the slowest PC
running DOS 2.1 will work fine as a
host for Bones. On the other hand, I
have excluded people without access to
a PC. Ithink in the future I'll pay more
attention to allowing a wider range of
hosts to be selected -- perhaps on the
PLD programmer. In with the plans and
schematics, I include the artwork for the
PCB in case you want to make one rather
than wire-wrapping, but I do not sell a

PCB for Bones, which brings me to my
next subject.

Printed Circuit Boards (PCBs)

I made a few PCBs for Bones, but find
I dread doing this. There is no way I can
charge a price that would make me smile
at the thought of making the board. 1
have tried 2 or 3 boards with the iron-on
method. None came out worth a damn.
I keep reading about this technique work-
ing. Maybe I’m just too sloppy or stupid
to make it work. It sounds like such a
great idea, just laser print or photocopy
your artwork on to a plastic sheet (or
onto the DynaArt paper), then transfer
the toner to the board with a household
iron, pull off the plastic backing (or
disolve the DynaArt paper backing), leav-
ing a beautiful pattern of toner on the
copper blank, then etch the board. Well,
for me some of the pattern transfers,
but never does _all of the pattern trans-
fer! Are any of you doing this success-
fully? If so, tell me how you do it.

The only way that has really worked for
me, so far, is to produce the artwork on
white paper, using a laserjet printer, take
the paper to a print shop and have them
make a film negative (solid black every-
where except clear where 1 want copper
to remain). Then I do a contact print of
the film negative onto a presensitized
(dry film) copper blank from Kepro us-
ing a #2 Photo Flood bulb. The blank is
then ““developed’’ by soaking and rub-
bing in an akaline bath, and then etched
as usual. My boards usually come out
OK, but not always. After etching, I
dnill the holes with a Dremel drill in a
little drill press. This is mentally te-
dious. Do I have the hole lined up or am
I about to ruin the board? All of this is
so much trouble that I can’t see myself
in the board-making business at the
moment,

[have some other ideas, though. I've
bought some positive resist-covered
boards, from Circuit Specialists in Ari-
zona, but [haven’t tried them out vet.
This eliminate the step of having a film
negative made. Maybe I could draw the
positive artwork directly onto a plastic
sheet in a laser printer and then do a
contact print. It might even be possible

The Computer Journal / #62

-- I"d like to test it sometime -- to print
a positive onto white paper and do a
contact print of the paper directly onto
the board. The black lines of the toner
will block more light than the paper will
block. I have done this fairly success-
fully onto lithographic film, so it might
just work. If any of you have any expe-
rience or ideas related to this Subject,
please write.

The thing I want most, though, is an
XYZ table. Or, at least an XY table.
I’'m willing to provide the force to move
the drill up and down, I just don’t want
to have to position it. So, the XY table
is for drilling the boards, which would
eliminate a lot of the tedium of making
a board. If I build an XYZ table, I would
try to use it not only to drill the board,
but to route the board. That is, put some
sort of grinding head into the drill, and,
under computer control, cut away cop-
per where I don’t want it. This would
eliminate the need for the photosensitive
boards.

I really want to try this, but so far I've
been too lazy or busy to build anything.
I have some stepper motors. I'm not
worried about the programming of the
computer or about the electronics, it’s
the mechanics of building the table that
I feel incompetent to handle, Various
places offer high-precision threaded rod
and anti-backlash nuts. I wonder,
though, how well the cheapest set up
would work.- Take regular 1/4 inch, 20
threads per inch, $1/foot threaded rod
from the local hardware store and attach
it to a 200 steps per turn stepper motor.
The nuts to go on the rod would cost
about a nickel each. 200 steps would
move the nut 1/20 of an inch (i.e. 0.05
inch), so 100 steps would move it 0.025
inch and one step would move it 0.00025.
This means 4 steps move the nut 1/1000
of an inch,

Wouldn’t this resolution be sufficient
for prototype PCBs? 1 think it’s worth a
try. Ifthe system worked fairly well, but
was a little too sloppy, then extra money
could purchase the higher precision rod
and nut. If the only problem is backlash,
I see two possible solutions. One is to
use something like the old-fashioned
screen door springs to put just a little

The Computer Journal / #62

tension on the nut in one direction to
take up any slack. The second solution
is done in software. Don’t move left,
cutting or drilling, and then down and
then work back to right cutting or drill-
ing. Instead, work to the left cutting or
drilling, then home it all the way to the
right, move it down, and work leftward
once more. In other words, always work
out from home position, don’t work back
in.

Tunderstand _Circuit Cellar Ink_ is plan-
ning to publish some sort of XYZ table
from one of their design contests, but [
don’t know when it will appear. Maybe
that will spur me on to try it. What do
you all think?

User Interfaces

Iloved in #60 how Rick Rodman showed
what a monstrosity Unix is. Still, it and
its spawn of the devil, C, have a big
following. At the university, I've had a
chance to get much more familiar with
them. I’ve had to use C and C++ exten-
sively at SWT since C is the de facto
official language these days in academia.
In an operating systems course we delved
fairly deeply into the source code for
Minix. I was one of the very few who
successfully completed the assignment
to rewrite the Minix floppy disk driver to
use whole cylinder buffering. A glutton
for punishment, I am enrolled this sum-
mer in a Unix programming class. I
want to criticize C and Unix, so I feel I
need to learn a little about them; seems
only fair. Bill, if you want to criticize
MS-DOS, and I do think you have many
legitimate reasons for doing so, I think
working with Minix for a while might
put MS-DOS in a better light. I don’t
say there isn’t some fun in hacking
around with it. Plus, Minix serves a
useful purpose in exposing people to
many of the ideas in current use in op-
erating systems. If you are a mechanic
and your customers drive Chevy Geos,
well, good or bad, you need to know
something about Geos.

Unix does have some concepts similar to
Forth. The collection of executable files
and scripts available from the Unix com-
mand prompt can be likened to the col-
lection of words available in a Forth

dictionary. The idea of small tools, each
of which does one simple thing, and
which can be linked together easily to do
complex jobs, sounds similar to the Forth
idea of a collection of small, simple tools
(words), each designed for a specific task.
Both systems offer the user a command
line interface. These similarities make
me a little uncomfortable.

Tell ‘Em I Didn’t Send Ya’

I’m not happy with Hard Drives Interna-
tional and their parent company Insight.
I feel they cheated me. I don’t plan to
ever do business with them again. They
credited me with the wrong amount on
a disk controller I returned. I polited
explained their error in a letter and got
the kind of reply that P. J. Plauger says
he files in his ‘“The Customer is Always
Right’’ file. P. J. says his file isn’t very
thick because there is seldom more than
one letter in it from any given company.

File Transfer Protocol

Or, ftp for short. Later I'll mention
getting Ghostscript via fip. Ftp is a
means of getting shareware or public
domain files and programs from sites on
the internet. For example, my Pygmy
Forth is available from a site in Portugal
via ftp (and maybe other places as well,
by now). If you do not have fip access
you should go to a local university and
ask around the computer terminal room.
Get someone to show you how to fip
files. It’s “‘free.”’

GEnie

Speaking of getting files, BBSs and ser-
vices such as GEnie are another source.
GEnie is changing their rate structure to
(in the US) a flat $10/month for up to 4
hours a month, plus $3/hour over 4 per
month. I always worry when they say
they are changing their prices to help
me. In this case, though, it looks like I'1l
save some money.

~ Drawing Schematics and Ghostscript

I’ve tried several approaches. The fast-
est is to sit down with a white piece of
paper and a plastic template and just
draw it out by hand. Thave not yet found

21

a better way. Yes, I've heard there are
schematic drawing programs available.
Maybe the expensive ones work well,
but I can’t afford them. The cheap ones,
shareware, I've tried were horrible. I
could never ‘‘get into them’’ and feel
oriented and comfortable. It has gotten
to the point where I don’t want to spend
_the time learning a new one to find it
doesn’t suit me.

I've done some schematics on a laserjet
printer directly from Forth. Usually I
define some large character cells, for
resistors, AND-gates, etc as a laserjet
softfont, which is downloaded to the
printer. Then I code Forth words to
draw lines and symbols. This has worked
fairly well, but the scaling of the final
drawing is inflexible and the layout work
is not interactive, so it requires printing
many partial results and adjusting the
drawing until it finally looks right.

Don Lancaster has been touting the
PostScript language for PCBs and sche-
matics (and everything else). He runs
the PostScript Round Table (PSRT) on
GEnie. When I located a free PostScript
clone named Ghostscript, I decided to
give it a try, since PostScript has many
more graphics primitives built into it
than I have yet written for my Forth, and
since it allows easy scaling and rotating
-of drawings.

Source code for Ghostscript is available,
but I just got an executable file for a ‘386
PC via ftp. That, plus some samples
from the PSRT, plus a careful study of
several books written by the company
that created and markets PostScript
(Adobe), and a lot of hard work gave me
a pretty good grip on the language. Itis
very similar to Forth, but not really in-
teractive, at least the way I was using it.
I would edit my program, get out of the
editor, bring up Ghostscript, have it ex-
ecute my program (i.e. produce a page or
two on the printer), get out of Ghostscript,
bring up the editor, etc.

Unfortunately, this was not much better
than the way I’d been doing it in Forth.
The extra graphics primitives were nice,
but the feedback was considerably slower
than I was used to with Forth. The
drawing was still not interactive. I

22

managed to produce some pretty sche-
matics, but the process was so tedious
that I’ve gone back to hand drawing
them. Ghostscript accepts Postscript
commands and programs and produces
output for a PC’s VGA display or for a
non-Postscript laser or dot-matrix printer.
The programs you produce can then be
taken to a friend’s or school or copy shop
with a real PostScript printer for your
final copy. It would be much, much
better to be developing programs in
PostScript if you had a real PostScript
printer attached to your computer.
Ghostscript gives you a cheap taste of it.
I still plan to use PostScript (Ghostscript)
for such things as graduation announce-
ments, Xmas cards, ‘“What part of NO
don’t you understand?’’ posters, and
anything that requires easy access to a
variety of fonts.

Throw Away MS-DOS

I've had the urge to run Forth on the
bare metal. The entire system would be
available in source code form, so noth-
ing would be hidden or mysterious. One
way would be to use BIOS calls for the
interface to the hardware (OK, this isn’t
quite bare metal) and would be very
portable to PC clones and semi-clones,
but the use of the BIOS means you don’t
have full control over the code of your
system and it means you can’t run at the
fastest speed. The other way is to use the
BIOS only to boot the system from disk
and then do everything else directly, no
BIOS, no MS-DOS, no nothing! (This is
how Minix does it. One of the uses of
Minix is as source for details on how to
access the PC hardware directly.) Would
an approach like this meet Bill’s objec-
tions to PCs?

I don’t think that could be my only sys-
tem, though. I feel I have to have a
system fairly similar to that of my clients
and potential clients. I think this means
at least a ‘386 PC with MS-DOS (or PC-
DOS or DR-DOS) and maybe running
WINDOWS. I keep saying I’d throw
away MS-DOS if I could, but I don’t yet

see how to do it, except by separating
hobby from business.

Conclusion

Please send your solutions to my prob-
lems and your comments and sugges-
tions to me at 809 W. San Antonio St.,
San Marcos, TX 78666, or via email to
fs07675@academia.swt.edu on internet
or to F.SERGEANT on GEnie.

Possibly trademarked names:
MS-DOS, PC-DOS, IBM, DR-DOS,
PostScript, WINDOWS, Chevy, Geos.

A list of CPM User groups :

FROG Computer Society
Jim McCollum
321 Executive Office Building
Rochester, NY 14616-1701
(716) 244-4038
FROG Pond BBS:
(716) 461-1924

Vancouver Island Computer Operators
Club
Dee Schoolingin
942 Cloverdale Avenue
Victoria, BC V8X 2T6
(604) 388-5464 x 107

Vancouver Portable Computer Club
Jay H. Siegel
4251 Lancelot Drive
Richmond, BC V7C 454
(604) 271-1519

Osborne/Kaypro User Club of Toronto
Leslie F. Fontaine
4 Munhill Road
Weston, Ontario M9P 1P9
416-247-8503

To include your name in this list,
please send information to;
The Computer Journal
P.O. Box 535
Lincoln, CA 95648-0535
or
B.Kibler@GEnis.com
GEnie = B.Kibler
CompuServe = 71563,2243
or
1-800-424-8825

The Computer Journal / #62

Modem Script and Forth Tricks

By Walter J. Rottenkolber

As part of my ever ongoing modem program, I looked over a
commercial product. One of the major features was an exten-
sive script language. It soon became clear that forth provided
most of the functions of a script language with few exceptions,
in fact just three basic words.

First, words to output command strings to the modem -- M”,
MTYPE, and MCR. Second, words to output command strings
to the remote system ~ REPLY’’, and REPLY.

Third, words to wait for a key string from the remote system
before continuing with command sequence -- WAITFOR”’,
and WAITFOR. Use these words very much like .” string’
and ** string’’ TYPE. Screen 2 provides some examples of use.

To output control codes, a carat (*) placed before a letter in the
string converts it into the equivalent control code, eg. "M or *m
outputs a carriage return. Case does not matter. I left out error
checking so you must select proper character. This is only
implemented in .M’ and REPLY"".

Standalone control words, such as MCR, can also be defined.
In WAITFOR”’, the variable TIMER2VAL must be adjusted
to provide a one second basic delay. A value on the stack
determines the number of seconds remote input is scanned
before timeout. A flag (true= match before timeout) left on the
stack allows you to modify the direction of the program.

\ WJR18FEB93
Script Words for Forth Modem Programs
Walter J. Rottenkolber

Feb. 18, 1993

\s

MEMIT = primative direct modem output word.
T-OUT = terminal output word.

T-IN = terminal input word,

a carat (*) before a letter in string converts it to the equivalent control
character.

VARIABLE &MACHR? ASCII A CONSTANT "CHR

:M*CHR ()

&MACHR? @ IF UPC ASCII @ - MEMIT 8M*"CHR? OFF

ELSE DROP &M*CHR? ON THEN ;

:MTYPE (addr$len-)

&MACHR? OFF BOUNDS ?D0 | C@ DUP ACHR =

&M*CHR? @ OR IF MACHR ELSE MEMIT THEN 20 MS LOOP ;

H(MY) ()

The Computer Journal / #62

R> COUNT 2DUP + >R MTYPE ;
CM (=)

COMPILE (M”),"; IMMEDIATE
“MCR (~) CRR MEMIT ;

\S - examples of use -

CATTN (=) M +++AM" 1200 MS |

:TONE (--) M"ATDT,”

:PULSE (--) .M"ATDP,” ;

DEFER T/PDIAL ' TONE IS T/PDIAL

:DIAL# (a!-) T/PDIAL MTYPE MCR ;

: ZDIAL# (a |) \Dials then quiets modem for voice.
T/PDIAL MTYPE .M” CO*M" ;

:MINIT () \lnit. string for Zoom modem.

M" ATM1 S0=0 S7=60 X1*M" ;

:DIAL (al--) 2DUP TYPE DIAL# ;

\ nerdbbs (--) CR ." nerdbbs = * * 123-4567" dial ;

VARIABLE &RACHR? ASCII A CONSTANT *CHR
:RPYACHR (--)

&RACHR? @ IF UPC ASCIl @ - T-OUT &R*CHR? OFF
ELSE DROP &RACHR? ON THEN ;

:REPLY (addr$ len--)

&R*CHR? OFF BOUNDS ?DO | C@ DUP *CHR =
&R*CHR? @ OR IF RPYACHR ELSE T-OUT THEN LOOP ;
((REPLY") ()

R> COUNT 2DUP + >R REPLY ;

:REPLY" ()

COMPILE (REPLY"},”; IMMEDIATE

VARIABLE &TIMER VARIABLE &MATCH?
VARIABLE &TIMER2 VARIABLE TIMER2VAL
1600 TIMER2VAL ! \for 5 Mhz Kaypro Ii

: RESTIMER2 (--) TIMER2VAL @ &TIMER2!;

: CNTDN -1 &TIMER +! RESTIMER2 ;

: TIMEOUT? (--f) \T=TIMEOUT

-1 &TIMER2 +! &TIMERZ @

0= IF CNTDN THEN &TIMER @ 0= ;

: TIMEMKEY (- fi ¢ f) \t=timeout

BEGIN TIMEOUT? IF TRUE EXIT THEN MKEY? UNTIL MKEY
FALSE ,

:W-MATCH (addr$ len - addr$ len)

2DUP BOUNDS DO

TIMEMKEY ?LEAVE UPC i C@ UPC = DUP

&MATCH? ! 0= 7LEAVE LOOP ;

: WAITFOR (addr$ len n — f) \ t= match within timefimit
&TIMER ! RESTIMER2 BEGIN &MATCH? OFF W-MATCH
&MATCH? @ &TIMER @ 0= OR UNTIL

2DROP &MATCH? @ &TIMER @ AND ;

: (WAITFOR") (- f) R> COUNT 2DUP + >R ROT WAITFOR |
- WAITFOR” (n --) \t= match witin n= #sec timelimit
COMPILE (WAITFOR™ ," ; IMMEDIATE

23

-- Sum of Digits Cubed --

This small program solves the problem: Find those numbers
greater than one whose digits cubed add up to the original
number. (Hint: There are only four, all under 1000.)

Lest you consider this problem important, the British math-
ematician G. H. Hardy termed it ‘‘insignificant’ since the
solution contributes nothing to the advancement of mathemat-
ics.

Reference: Thomas P. Dance:”’The Fortran Cookbook’’, 2nd
Edition, TAB Books, 1984, p. 41.

\ Screen 32

:5DROP (nnnnn--) 2DROP 2DROP DROP
:PRINT# (nnnnn-) 50DO 6.R LOOPCR;
:CUBE (n--n3) DUPDUP**;

:HEDER (--)

CR. Sum Cube of Digits" CR

" Int. Cube Hun Ten One"CR;
:SUMCUBDIG (n--nnnn)

100 MOD CUBE >R 10/MOD

CUBE >R CUBE R> R>3DUP + +;

:7PRINT# (nnnnn-)

2DUP = IF PRINT# ELSE SDROP THEN ;

: SUMCUBE (-)

HEDER 1000 1 DO | SUMCUBDIG

| ?PRINT# LOOP ;

— The Greatest Common Denominator —

This one screen program finds the Greatest Common Denomi-
nator, and so should be a boon to those students struggling with
fractions. After a modulo operation on the original numbers
(adjusted so the larger is the numerator), the modulo is re-
peated on the previous denominator and the current remainder
until a remainder of zero is reached. The previous remainder
is the answer. On randomly selected numbers, this generally is
one, but the program will search out any valid GCDs with less
pain and suffering than you will endure.

\ Screen 33
\ Greatest Common Denominator
\ Max values 65535

WJR12APRE3

:UMOD (uu-urug)0SWAP UM/MOD ;
:UMOD (uu--ur) UMOD DROP ;
:GCD (uu-u)

2DUP < IF SWAP THEN

BEGIN TUCK UMOD DUP

WHILE REPEAT DROP ;

:.GCD (uu--)

GCD." ="U.;

-- Perfect Numbers --
Divisors of a natural number are those integers that divide

evenly into the number. Proper divisors are all those divisors
except the number itself. When the proper divisors are summed,

24

numbers can be divided into three classes -- deficient, perfect,
and abundant -- depending on whether the sum is less than,
equal to, or greater than the number. For example: 8 is defi-
cient because its proper divisors, 1, 2, 4 = 7, which is less than
8.

Ancient numerology considered these distinctions important,
and Perfect numbers were regarded as especially pleasing.
When you examine the numbers some rules emerge. Prime
numbers are always deficient because the proper divisor is
always 1. Also deficient are powers of prime numbers, and
proper divisors of a perfect or deficient number. On the other
hand, proper multiples of a perfect or abundant number are
abundant.

Lest you believe Numerology passe’, consider all the searches
for the number 666 in the name or title of your favorite enemy,
so that you can apply the ‘Mark of the Beast’ to him. (It
originally referred to Nero Caesar, if you've wondered).

The program takes numbers from 1 to 499, and determines the
class to which it belongs. 7WAIT pauses the calculations every
20 lines so you can examine the number list and pick out the
Perfect Numbers. A keypress continues the process.

If you plan to search more and larger numbers, it’s best to
rewrite the program to pickout only the perfect numbers or to
save the results to a file, The calculations become much slower
after 500, and stopping every 20 lines can be tedious.

Reference: Thomas P. Dance:”’The Fortran Cookbook™’, 2nd
Edition, TAB Books, 1984, p. 28.

\ Screen 34

\ Perfect Numbers WJR20APR93
VARIABLE N# VARIABLE N/2 VARIABLE SUM
NXT# (n--) N#! OSUM!;

: FINDIVSUM (--)

0 BEGIN 1+ N#@ OVER

MOD 0= IF DUP SUM +! THEN

DUP N/2@ >=UNTIL DROP;

:WATIS# (--)

SUM@ N# @ 2DUP

<|F NIP . ." = Deficient” EX!T THEN

TUCK > IF . ." = Abundant" EXIT THEN

.. = Perfect =" :

D ?WAIT (i--) 20 MOD 0= iF BEGIN KEY UNTIL THEN ;
:PERFNO (--)

500 1 DO CR | DUP NXT# 2/ N/2!

FINDIVSUM WATIS# | ?WAIT LOOP CR ;

~ THE END —

The Computer Journal / #62

TCJ Center Fold

8.1 General

The 820 family is a table top microcomputer composed

of the following assemblies;
820 IP Processor

1. D.C. Power Supply

2. Processor (CPU) PWA.
3. CRT Assembly

4. Keyboard Assembly -

820 IP—5A400 (5.25" Single Sided Floppy Drive)
820 IP ~SABC0 (8" Single Sided Floppy Drive)
820 IP —5A450 (5.25" Dual Sided Floppy Drive)
820 IP - SAB50 (8" Dual Sided Floppy Drive)

820-11 Processor

1. D.C. Power Supply

2. Processor (CPU) PWA

3. Floppy Disk Daughter PWA or,
Fixed Disk Daughter Pwa

4. CRT Assembly

5. Keyboard Asssmbly

820-11 IP - SA400 (5.25" 5.S. Dusl Density Floppy Drive)

820-11 IP~ SABOO (8" S.S. Dual Density Floppy Drive)
820-11 [P - SA450 (5.25" D.S. Dual Oensity Drive)
820-11 IF = SA850 (8" D.S. Dual Density Floppy Drive)
820-II IP - SA1000 (10 MB Fixed Drive)

8.2 D. C. Power Supply

The D. C. Power Supply converts the AC supply
input to three DC voltages required by the system.
These voitages are +5, +12 and - 12VDC. Each
voltage has short circult protaction by electronic
current limiting. When any of the outputs are
overloaded the entire Power Supply will shut down.
The +5VDC is provided with overvoltage protection.

The CPU is supported by five Inteiligent periphial
controllers. These devices handle the tasks of
transferring the data to and from the periphial
devices, thus relieving the burden on the CPU.

A. Disc Controller

This device (On the 820-I, it is located on
the Daughter PWA for the floppy or the
fixed) interprets commands from the CPU
end generates appropriaté control signals
for the disc drives. It also interprets status
signals from the disc drives and delivers
them to the CPU upon request. The second
function is to convert paralle] data from the
Data Buss to serial data suitable for
recording on the disc and also the
conversion from the serial data read from
the disc to parallel data suitable to the
CPU. The fixed drive assembly contains a
1403D Controller PWA that in effect tells
the system what type of drives are being
used (SAB00Q, SAB50, or SA1004),

B. CRT Controller

The devices that make up the CRT
Controller provide interface for the display
and CPU. The CRT Controller will
convert data from the system data bus into
Horizontal Sync, Vertical Sync and Video
signals used by the display. The CRT
Controller also handies the task of scrolling
characters up the screen.

C. Timer Controller

8.3 Processor (CPU) PWA

The processor (CPU) PWA provides the master control for
the system. The Microprocessor is the central processing
unit. It executes programs (software) that are stored in
the 64K Ram and the 2K ROM (820), 6K ROM (820-1I).
The 820 IP incorporates a ZBO Microprocessor where as
the 820-II IP incorporates a ZBOA. Added features of the

820-11 IP processor are:

A. 4 MHz Cluck

B. 2-RS5232 Ports (one dec'cated to serial
printer)

C. 820 System Bus Access

D. Audible Alarm

E. Video Highlighting

F. 6K ROM Expansion Capacity

G. 2-Fixed Disc Drive Options:
SA606 and SA4LS0
SA1004 and SABSO

H. Ethernet Connection (via 872/873 Comm
Server) ‘

I. 2-Buffered 8 Bit Paralle] ports

J. Display Graphics

The Computer Journal / #62

Center Fold Section

The timer controller's function is to signal
the CPU when a pre-programmed amount of

time has elapsed. One of the uses of this
timer is the 30 second delay before turning

off the 5.25" Disc Drives.

. Serial Interface Controller

This device handles the conversion of the
CPU's parallel data to serisl data required
for serial printers and data communications
equipment (modems), also the conversion of
serial data to parasllel data suitable for the
CPU. The controller also provides status
information from the external serial device
to the CPU. Modem control commands
from the CPU are generated by this
controller.

Parallel Interface Controller

This device is used as an interfsce between
the CPU and the parallel keytoard. It also
generates some control signals used as Disc
Orive selects and memory bank selecting.

25

INH-R [ZIJ""
ZNN-B RS I v

13,4310
Ris -
o 4 4 uie o
L L
[as0n
{504 * (XY fl
' B> . g%—ih n [us) =
4108, 2 152; T14LS29 3
wev o, ion pcxd L
94150 .IOOV < I_AL A3 A4 81 B2
mvll as 3 sl [T .q“! i
£25 80
[of a4 INp.5
R W@ﬂ@ 2wl
o, ____._ @zw-n
5 N 7:5'5’ INt-&
INP-4
SH2, A8 2 ' 4 S 4 J
2ZNB-9 m~—214:5 Y EE!- NP3 J
z e +5V DAL
IND 5[:"08 £laa i
& i T __] E1PTY 1 P
D BEp2a zfg-zs'“ vi2 Z vt
—Mlap P ZNB-8 - 4Y H— “069
- l @ L
128 N [8 28
SH2,ZNB8-9 [J]———4¢ 4q (A28 Uisa ay[c PP e
oS SN2, INB-8 Sf-Lss'rq (L PP 3 N
- L I_
su2zn g9 (Y50 sofl—m. - _—nmfﬂ'l T; o TS 18l
. IN =03 12 tels) r 44 R e
8-8 1= . o Il
Shazne-s PR 3p ¢ % P 3 |, .
z 462 val,a 1
- " , B | esas|, o AN
sw2.2n8-8 (L ——— 0 &aff ™ — 39: 2 st gmdy r._‘u
et 4"“”‘5 61‘2) = J s,
SH2. Zne-8 (M}— % 2|t .:a}——' .
IN (35 Sa: i s 3
8-8 . * ! he
SHALINE-¢ REEL W oy ¢o | J?;Lscsv T a i
+sv | ar L . 2., A u
] a4
t___ _] Slom -
R z‘u'oﬁ' . nF’TJﬂ
2
swa,tne-a TS LT
ZNK-8 @FTES 2a
SH2,ZN8-8 [OT2 I
- ZNH-8 [ATIER 1] L i
. SH2.2n8-1 (B2 stu_sTs il
ZHH-8 [AT54 *
su2,zn8. 7 (EPS o e
zmm@% 1
3
$12, 1881 [1_’_}:“ 2 wh
. b
INH-8 (A " 28 o
sw2,Zne-r (T 224
zmv-lmj‘"— 8
SNz, IN8-1 TP L PP
zw—a'Tf‘-'— L= P
.wz,mz;-vr_i/:}ﬁ2L Maa avid
48NS
[
SH4,INB- 3 B = ;
[ore X \ p
ool 4 1
————r——
t)
Y p— -
2 npt o vss *QJ
e ":q MUY ZAS
veo T, J 7
rapit
4
[T
ZND-4 % +5Y !. .
-3 L)) ol
SH2,ZNB-2 (77} 706 R
$H2 ZN8-3 (4T}t
Sh2,288- 3 (7E YIREGE
SH5,2NB-8 [CApHCENT
CRT DISPLAY GEN
Center Fold Section The Computer Journal / #62

26

ING-8

»

nr-0 ———-JQDA ING-4:
Jl}f‘b s¢2 INE-1O
ZNP-4 SCi
Mzne-o ZNH-I

(BA] zZnH-1

scg aC

INH-I

LCO BBl Inm-6

o | l

5 :LL .|

‘et FE zN MG

LCE (AT} INM-Y
Lot (BR) Zam-T

MNIVG o -3

S

©Q — ® Ww R W

The Computer Journal / #62

(7] t uw AT
1 use [T ues [uer
- — -
— — -
p— g a— —1
— — —
1 — 1
— - -
me p{1 3 14 2nd
. | L
3] ¢3 w{iandhe] nmﬁﬂ
__P¥c
ETC
a4 l
| 9
o}
a8 W
~ Uy ::! 13
_2, "
3 pabl2
4
teptt. R40 SR39
e mpﬂ #SVt oK
.———J)
S qf,, Y92
e
nc- 8 [BAF -

' st
zna- 8 (Bof— s ~armerer-G
NG NOES

e
L aded
TR Sl SWUAFEIESERN

= g

A

T Sl an0 LI G, S St B G
TOOMET ¢ G BIE0S COTERIES cat 4 AAm AN VB N5 S
- 41T COGLECS A Somas W Srbai Sup PRt ward T
AT SRAPgaAL I qug 40 Gusa pgREs e s HER 73 48
oo e

-
WALRGl & SAEAS) FER MONE ONPURATE Sulr 4R SAEl LN o

SCHEMATIC - DTWS . SV

i
1

[
Z

Center Fold Section

28

8.4 DISC DRIVES (5.25")

The left and right disc drives are identical except
for the placement of jumpers/resistor networks on
the disc drive PWA's. Each of the Floppy Dise
Drives contains the following,

1. DC Drive Motor

2. DC Head Stepper Mgtor

3. Read/Write Head

4. Head Load Solenoid And Load Pad.
5. Track - Detector Switch

6. Index Led/Detector

7. Write Protect Switch
8. Control PCB

9. Drive Indicator LED

DC Power is constantly supplied through the disc
interface harness from the power supply In the
processor. The DC drive motor is turned on when
the appropriate control signal is active from the
processor PWA. The disc drives rece’\e control
signals through the disc signal harmess from the
Floppy Disc Controller on the processor (CPU) PWA,
These control signals select the sppropriate disc
drive, control the head stepper motor, the head load
solenoid and select read or write modes.

The disc drives send the following status
information through the diac signal harness to the
EWpApy Disc Controller on the Processor (CPU)

1. Ready (Floppy disc loaded and at speed)

2. Index (Index hole sensed)

3. Track 00 (Rsad/Write Head pozitioned on
Track 0)

&, Write protect (Write protected disc loaded
in the drive)

The function of the Disc Drives is to magnetically
record (write) data on a floppy disc, and to play
back (read) infarmation that had previously been
sto-ed on a floppy disc.

8.5 DISC DRIVES (8")

The left and right Disc Drives are identical except
for the placement of jumpers on the disc drive
PWA,

Each of the Floppy Disc Drives contains the
following:

1. AC Drive Motor

2. DC Head Stepper Motor

3. Read/Write Head

4, Head Load Solencid and Load Pad
S. Track 00 LED/Detector -

6. Index LED/Detector

7. Write Protect LED/Dstactor

8. Control PWA

9. Drive Indicator LED

AC power is constantly supplied through the Disc
AC power cord to the drive motors from the AC
Power Distribution Panel when the power on switch
Is on. The disc rotational speed is 360 rpm. The
drive pulleys and belts are different sizes for the
USN/XC systems (60Hz) and the RX systems (50 Hz)
in order to obtain the 360 rpm speed.

Center Fold Section

The Internal Supply supplies DC power (+5 VDC, -5
VDC, +24 VOC and GND) through the Disc DC
Harness . The DC power is used far the logic

cireuits and driver/receiver circuits on the PWA's.
The Disc Drives receive control signals through the
Pisc Signal Harness from the Floppy Disc Controller
‘on the Processor CPUPWA. These control signals
select the appropriate Disc Drive, control the HHead
Stepper Motor, the Head Load Solenoid, and select
Read or Write modes.

The Disc Drives send the following status
information through the Disc Signal Harness to the
Floppy Dise Controller.

1. Ready (Floppy Disc loaded and at speed)

2. Index (Index hole sensed)

3. Track 00 (Read/Write Head positioned on
Track 0)

4. Write Protect (Write protected disc loaded
in the drive)

The function of the Disc Drives is to magnetically
record (write) data on a floppy dise, and to play
back (reed) information that had previously been
stored on a floppy disc. :

8.6 5.25" AND 8" DUAL SIDED

The SA450 and SA850 Disc Drives are also used on
the 820 Femily. The functions are the same as the
SA400 and the SABOO with the exception of a
additional signal "side select" thus allowing the Dual
sided 5.25" drives to have 80 tracks and the dual
sided B" drives to have 154 tracks. On ths 820-]]
Processor, we have double denaity capability. This is
obtained by the use of MFM (modified frequency
modulation}) and M2FM (modified, modified
frequency modulation) rather than FM, which is the
standard method of encoding data on the diskette.
This causes the write oscillator frequency to double.
Data transfer rate is also doubled. Thus we now
have dual sided, double density which is
approximately four times the capacity of a single
sided, single density.

8.7 CRT ASSEMBLY

The CRT Assembly contains a complete CRT
monitor requiring only OC Power, horizontal and
- vertical Sync and video inputs.

The CRT has a 12 inch screen with a display
capability of 24 lines of 80 characters per line. The
Video rate is 15MHz. !

The 820-1 has Business Graphics made possible by a
4*4 Pixel Resolution. It has two sets Of 128
character sets (1 U.S. FONT, 1 GRAPHIC FONT),
plus the capabilities for 2 additional sets. The 820-
Il also has Character Blinking and Highlighting. The
RX units have a INTERNATIONAL FONT,

8.8 KEYBOARD ASSEMBLY

The Keyboard provides the keyswitches that upon
activation generate the appropriate ASCI code to
the parallel interface controller on the CPU PWA.

The Computer Journal / #62

SCSI EPROM Programmer

By Terry Hazen

 Special Feature
Intermediate Project

SCSl Interfacing

A Simple EPROM Programmer for
the SCSI Bus

At last year’s Trenton Z-Fest, I bought a
set of YASBEC boards from Paul
Chidley. After I got them assembled
and running, the next step was to put in
a 20mbhz static ZS180 chip and run them
at 18.4mhz. The static ZS180 has an
additional control register that allows
you to change the internal ZS180 clock
divisor to make the ZS180 clock run at
the crystal frequency instead of 1/2 the
crystal frequency. You do that by send-
ing 80h to control port 1Fh each time the
Z180 is turned on. So far, so good.
That’s just a small program that can be
run at startup time. There’s just one
small fly in the ointment. When you
double the clock speed, you also double
all the baud rates. The fastest a 2180
can drive a terminal at 9mhz is 19,200

“baud and I normally use 38,400 baud.
When I tried to boot at 9mhz, my boots
started out with garbage on the screen
until the little program that doubles the
ZS180 clock speed was run and the con-
sole port baud rate doubled to 38,400
baud. The obvious answer was to add a
few bytes of code to the boot EPROM to
set the clock divisor before the monitor
or BIOS cold boot routines were run.
Since regular Z180 chips ignore port
1Fh, the new code would boot properly
with either chip. Ok. Now all I needed
was an EPROM programmer...

I thought I remembered secing simple
serial EPROM programmers advertised
for under $100, but when [started look-
ing, all the programmers I could find
were either much too expensive or re-
quired a PC to run them. Since I don’t
have a PC, I decided to look into design-
ing and building a simple and inexpen-
sive EPROM programmer that would

The Computer Journal / #62

get all its smarts from software run on a
host computer.

The first thing I had to decide was how
to interface the programmer with the
host computer. I have several Ampros
as well as the YASBEC, so I didn’t want
the programmer to be computer-specific.
Serial communication isn’t difficult but
it requires the usc of computer-specific
modem-type supplemental auxillary port
routines. Parallel communication is
better and easier but unlike the PC, nei-
ther the Ampro or YASBEC has a bidi-
rectional parallel printer port. But the
Ampro 1B, YASBEC, SB180 and most
other ““‘modern’’ 8-bit computers have a
SCSI (Small Computer System Inter-
face) interface available. Since the SCSI
bus is an 8-bit bi-directional parallel bus,
it met my requirements very nicely ex-
cept for two things. I didn’t know very
much about it and at first glance it seemed
very complicated.

A quick ZFIND search of my TCJ index
file produced a number of references to
the SCSI bus (see References.) Rick
Lehrbaum wrote a very interesting and
informative 5-part series on the SCSI
bus which includes the design for a Z80
SCSI adapter board and its driver soft-
ware. He also wrote an article on the use
of SCSI for generalized 1/O.

A similar search of my CCI index file
turned up Jim MacArthur’s Circuit Cel-
lar Ink article, “‘Build a Simple SCSI-
to-Anything Interface’’, which describes
a simple SCSI interface design. These
articles convinced me that a simple SCSI
EPROM programmer board was feasible
and would be a good way to get some
hands-on experience with the SCSI bus.

Now for the EPROM part. A search of

my article files produced several excel-
lent EPROM programmer articles by
Steve Ciarcia in BYTE, These articles
cover EPROM basics, how they’re pro-
grammed and how Steve chose to set his
boards up to accept different EPROM
types. They showed me what is required
to program an EPROM.

In this first of two parts, I'11 describe the
SCSI EPROM programmer design. [t
uses Jim MacArthur’s “‘Build a Simple
SCSI-to-Anything Interface’’ simple dis-
crete 1C hardware design to create a
*“SOS’’ (Sort Of Scsi) interface. We pay
for the hardware simplicity by requiring
special SCSI drivers to communicate with
the programmer board, but it turns out
that they are also pretty simple. I'll talk
about those software drivers in part 2.
While my finished EPROM program-
ming utility, available as EPROG10.LBR
on your favorite Z-Nodes, is a ZCPR3
program that runs on both Z80 and
64180/Z2180 computers, I'll try to de-
scribe the drivers in enough detail to
allow a user to implement them in other

languages.

Before starting the hardware design, 1
had to make a few other decisions. I
wanted to keep the design simple and to
use only easily available parts, To fur-
ther simplify the design, I decided to
accommodate only the newer 64k, 128k,
and 256k CMOS EPROMs that use a
12.5v programming voltage. These de-
vices share a mostly common pinout and
programming sequence and are readily
available by mail from sources such as
JDR Microdevices and Jameco. Of course
a builder can easily provide for other
chip sizes and programming voltages if
desired.

29

The SCSI Bus

The SCSI bus has 9 data lines, 9 control
lines, one (often optional) termination
power line and 31 ground lines. SCSI
devices are usually connected with 50-
conductor flat ribbon cables, which can
be up to 18 feet long. All SCSI data and
_control lines are active low. When
they’re not being driven, they’re pulled
high by terminators in the SCSI devices
at both ends of the bus cable. Each
terminator consists of a 220 ohm resistor
connected to +5v (or to the TERMPWR
line) and a 330 ohm resistor connected
to ground.

Most SCSI devices use a single dedi-
cated SCSI interface chip like the
NCRS5380 to interface the SCSI bus to a
host processor. Since the board will be
a simple dumb low speed system with no
on-board processor, a simpler and less
expensive approach will do fine. Be-
cause our interface doesn’t completely
comform to the SCSI specifications, it
needs to stay invisible to any other in-
habitants of the bus whenever it doesn’t
have control of the bus.

The SCSI bus specification allows up to
8 devices, each assigned an ID from 0 to
7, on the bus. Devices are either initia-
tors, usually the host computer, or tar-
“gets, such as your SCSI hard disk. Al-
though multiple initiators are allowed
on the SCSI bus, for hardware simplicity
we will assume that there is only one
initiator, that it has a SCSI ID of 7, and
that no bus arbitration is required.

The EPROM Programming Board
Hardware

The programming board schematic is
shown in Figure 1. The 50-conductor
SCSI bus ribbon cable is connected to
the programmer board through a 50pin
header socket, J1.

Inverting buffers U1 and U2 are used as
I/O data buffers to interface the SCSI
bus to the EPROM. SCSI data bus re-
ceiver Ul is a 74LS240, which has input
hystersis for good noisc immunity. The
SCSI bus driver U2 must be able to sink
48ma to drive the SCSI bus, so it must
be an open collector or tri-state device

30

with good sinking capabilities such as a
74AS760 or 745240. Because I had one
on hand, T used a 7458240,

When I did the programmer board lay-
out, I provided mounting holes for the
bus terminators, but I didn’t install them.
Since the board is very slow and in my
application would be the only bus occu-
pant, I thought that terminators at the
board end wouldn’t be necessary. This
proved to be the case, which reduced the
current sinking requirements for the bus
drivers to 24ma. The board runs just
fine as the sole bus target with one set of
terminators at the computer end of the
bus only. While it’s certainly prudent to
provide the specified termination, I guess
[just like to live dangerously. If you do
too, and if your programmer board will
always be the only SCSI bus target on
your system, you could use the 7415540
or 74ACT540 for both Ul and U2 for
easier board layout. Both have a straight-
through pinout, which makes printed
circuit board layouts much easier than
the old style criscross pinout.

74LS151 data selector U3 detects the
one-of-¢ight programmer board ID on
the data lines during board selection.
The initiator ID (7) line must remain
deasserted to avoid problems with stan-
dard SCSI devices. The three data select
inputs are jumpered to form the binary
board ID. You can provide a set of ID
jumpers as shown in the schematic or
you can do as I did and simplify the
board layout by fixing the board ID at 5
or some other arbitrary ID that you think
will remain unused on your system.

Selecting the Programmer Board

The SCSI bus is free when BSY\ and
SEL\ are deasserted (high.) When the
initiator wants to select the programmer
board, it asserts the SCSI data lines cor-
responding to the EPROM board ID,
keeping its own ID line (D7\) deasserted,
and then asserts SEL\ (low.) When data
selector U3 sees this condition, it re-
sponds by setting the BUSY flip-flop
formed by U7-U8 and asserting BSY\
through transistor Q1 to tell the initiator
that the selection is complete. The ini-
tiator responds by deasserting SEL\ and
removing the IDs from the data bus.

The programmer board now has the bus.

Once the board has control of the bus, it
retains control by keeping BSY\ asserted,
and SEL\ and RST\ deasserted. As long
as this condition is maintained, nothing
we do will affect any of the other targets
that might be on the bus.

When configured as an initiator, the 5380
can assert only ATN\ and ACK\. When
configured as a target, it can assert MSG\,
C/D\, I/O\ and REQ\. Since we need all
the control lines we can get, we’ll con-
figure the 5380 as a target during the
selection process.

Whenever the board is selected, power is
applied to DPST DIP relay RY1 through
transistor Q2. RY1 applies both Vcc
and Vpp (the programming voltage) to
the EPROM and also lights red led LED2.
To prevent damage to the EPROM, it
should not be removed from the ZIF
socket or replaced while this LED is lit.
As long as the board remains selected,
both Vce and Vpp are applied, allowing
us to both read from and write to the
EPROM.

Since the 5380 already uses the I/O\ line
to control the direction of its own trans-
ceivers, we'll use it as our own read/
write line to control our VO data buffers.
If we reserve REQ\ as a strobe line, that
leaves MSG\ and C/D\ as control lines,
which turns out to be just enough.
7418138 1-0f-8 decoder U4 decodes our
three SCSI control lines. Figure 1 shows
the decoder output line definitions.
DPDT switch S1 reconfigures the
EPROM pinout to use 64k/128k
EPROMS or 256k EPROMs.

Addressing the EPROM

Since the EPROM programming pro-
cess usually involves stepping sequen-
tially through all the EPROM addresses,
I decided to use a cascaded pair of
CD4040 12-bit binary ripple counters,
U5 and U6, to drive EPROM address
lines A0-A14. This simple hardware
arrangement means that the EPROM
can’t be addressed at random, but it
greatly simplifies the software drivers as
well as the hardware.

The Computer Journal / #62

The EPROM address is initialized by
asserting I/O\ and MSG\, deasserting C/
D\ and strobing REQ\. This pulses U4
output line Y1 low and, through inverter
U8, pulses the common counter reset
line high to reset both counters.

The EPROM address can then be stepped
. as required by asserting I/O\ and C/D\,
deasserting MSG\ and strobing REQ\.
This pulses U4 output line Y2 low, clock-
ing the counters to advance the current
address by one byte.

Reading the EPROM

The normal state of the bus, bus free, is
with all three control lines deasserted
(high.) This is our read state. When the
bus is free, bus driver U2 is enabled,
putting the EPROM byte at the current
address on the data bus, where the soft-
ware can read it from the 5380.

Writing to the EPROM

We select the write mode by asserting I/
O\ to enable bus receiver Ul. The write
mode is used whenever we need to write
to the EPROM. For decoding conve-
nience, the write mode is also used when-
ever we want to control the EPROM
address. We can write a byte to the
EPROM at the current address by assert-
ing the data bus, putting the byte on the
data bus, asserting I/O\ and thenstrobing
REQ\ to apply a timed pulse to the
EPROM PGM\ pin under software con-
trol.

Deselecting the Programmer Board

The programmer board is desclected by
asserting all three control lines and
strobing REQ\. The strobe, ORed with
RST\ through U7, rescts the BUSY flip-
flop, removing the board from the bus
and removing power from the EPROM.

Powering the Board

Since our programmer board will only
require 5-6vdc and 12.5vdc, it can be
easily powered by an inexpensive 12vdc
500ma wall-type plug-in unregulated
power supply, such as the ones sold by
Radio Shack, JDR, Jameco, etc. Provide
a female PCB connector on the board to

The Computer Journal / #62

match the power supply output connec-
tor. At our much lower current levels,
the supply’s output voltage will be high
enough that simple linear IC regulators
can provide our operating voltages. 1
used TO-220 chips because I had them
on hand. REG1, a LM340T-5, provides
Sv to the interface chips. Depending on
your power supply input voltage, you’ll
probably want to heat-sink this one.

1 wanted to have some flexibility in pro-
viding EPROM voltages. REG3, an
adjustable LM317T, supplies Vee to the
EPROM. The LM317 output voltage is
controlled by a voltage divider. Pro-
gram resistor Rp, connected between the
output and adjustment terminals, is usu-
ally set to about 240 ohms. Output set
resistor Ro, connected between the ad-
justment terminal and ground, is selected
to control output voltage Vo. The fol-
lowing equations allow you to calculate
either Ro or Vo:

Ro=Rp(Vo/1.25 - 1)
Vo=1.25(Ro/Rp + 1)

Switch S2 allows you to select an EPROM
Vcc of 5v for normal use or 6v for fast
programming. If you prefer, you can
substitute a multi-turn pot or fix Vec to
one voltage. If the EPROMs you will be
programming operate at up to 7v Vec
(including any overshoot,) as most newer
ones do, a single fixed Vcc of 6v will
allow both normal and fast program-
ming. Consult your EPROM spec sheets
to be sure.

REQG2, a second LM3 17T, supplies Vpp.
Although the design doesn’t provide a
Vpp adjustment, I have programmed
12.75v EPROMs using a Vpp of 12.5v
with no problems. If you wish, you can
substitute a multiturn pot for the fixed
output set resistor. Capacitors C5 and
C6 help reduce any overshoot spikes.

Constructing the Printed Circuit
Board

Although wire-wrapping or direct point-
to-point wirign are very suitable tech-
niques, I chose to build my EPROM
programmer on a 5"Xx7" double-sided
epoxy glass board using the direct resist
technique. Homemade double sided

boards aren’t hard to make but since you
can’t easily produce plated-through holes,
your layout won’t be as dense or efficient
as it could be with commercially pro-
duced boards. Instead of plated-through
holes, vias must be produced using small
pieces of wire or existing component
leads. To make the layout even more
tricky, you have to keep in mind that you
won’t be able to get at the top pads of IC
sockets to solder them, so you'll only be
able to bring traces to ICs through the
bottom pads. The same limitations ap-
ply to the SCSI socket and power con-
nector socket.

Since I don’t have a PC on which to run
PADS, I did my board layout the old-
fashioned way. I first laid out my board
full size on tracing paper taped over a
0.100" grid on a homemade light table.
I used one sheet of paper for the hole
pattern. I taped another piece over it to
lay out bottom side traces and later added
another piece for component side traces.
1 provided space for a zero-insertion force
(ZIF) socket for the EPROM and sockets
for all ICs. Try to run all component-
side traces in the long direction of the IC
packages and all bottom-side traces
across the IC packages.

The key to making your own double-
sided boards is pattern alignment.
Whether you use a program such as
PADS to produce resist patterns or apply
the resist directly to the board, you must
have a way to align the patterns on op-
posite sides of the board. The easiest
and most direct way to do this is to drill
all the holes before you apply your resist
patterns. I taped a piece of perf-board
with a 0.100" grid of holes over my
double-sided board to act as a drill jig
and transferred the hole pattern to the jig
board with a Sharpie marking pen. I
drilled the holes with a surplus 0.042"
diameter drill with a 0.125" shank
chucked in a small drill press.

After all the holes were drilled, I care-
fully rubbed each surface of the board on
a flat surface covered with #600 wet/dry
paper to remove the drilling burrs. If
you leave any burrs, you won’t be able to
get the resist pads sealed down over them
properly. Finally, I cleaned the board
with cleanser and a nylon scrub pad,

31

rinsed it with hot water and dried it.
From now on, the board should be
handled only by its edges to avoid leav-
ing oily fingerprints on the board sur-
faces.

Now for the fun part. With simple boards,
you can us¢ a Sharpie marking pen to
directly apply resist traces to the board,
but you can’t make very fine traces. You
get much better results using Datak dry-
transfer IC patterns and pads for the
hole patterns and thin printed circuit
layout tape for the traces. Datak sup-
plies are available by mail from Jameco
if you can’t find them locally. All traces
and patterns must be carefully burnished
so etchant won’t find its way under them.
Dry transfer letters may also be applied
if you wish to have lettering on the board.

I etched the board in a double layer of 1-
quart plastic zip-lock sandwich bags
containing Kepro ferric chioride etchant
that I'd prewarmed in the microwave.
Use enough etchant to generously cover
the board. Swish the etchant around
gently and constantly, keeping the board
surfaces covered with it. Monitor the
etching process visually, using a strong
light if necessary. Don’t let it etch too
long or you’ll start undercutting the traces
and pads. The time required to com-
pletely etch the board will vary consid-

. erably with the amount of copper to be
removed, the temperature of the etchant
and the amount and strength of the
etchant, which I reuse as many times as
possible. When you’re satisfied that the
board is completely etched, remove it
and thoroughly rinse it. Inspect it and
continue the etching if it isn’t completely
done.

1 took some laquer thinner outdoors and
used a nylon scrub pad to remove the
resist from the board. Then I cleaned
the board with cleanser and rinsed and
dried it. Now the board is ready to be
inspected for incomplete etching and
shorted traces. Don’t feel bad if you find
you have to make a number of small
repairs. It’s to be expected.

To finish the board, I mixed up a small
quantity of Datak TINNIT tinning solu-
tion in another pair of zip-lock bags and
tin plated the exposed copper. After

32

fixing any problems caused by
overetching or fine discontinuities in any
of the traces, the board is ready to load.

Next time we’ll look at the software re-
quired to test and control the finished
SCSI EPROM programmer board.

References

1) Rick Lehrbaum, *“The SCSI Interface
- Introductory Column,’” TCJ#22

2) Rick Lehrbaum, ‘‘The SCSI Interface
- Introduction to SCSI,”” TCJ#23

3) Rick Lehrbaum, *“The SCSI Interface
-The SCSI Command Protocol,”” TCJ#24

4) Rick Lehrbaum, ““The SCSI Interface
- Building a SCSI Adapter,”” TCJ#25

5) Rick Lehrbaum, *“The SCSI Interface
- Software for the SCSI Adapter,”
TCI#26

6) Rick Lehrbaum, ‘*SCSI for General-
ized /0, TCI#31

7) Steve Ciarcia, ‘“Adding SCSI to the
SB180 Computer,”” BYTE, May, June
1986

8) Jim MacArthur, *‘Build a Simple
SCSI-to-Anything Interface,”” Circuit
Cellar Ink, Apr/May 90

9) NCR 5380 SCSIINTERFACE, Prod-

Figure 1. Control Line Decoding

uct Brief, NCR Microelectronics Divi-
sion, Colorado Springs, CO

10) SCSI/PLUS Technical specification,
Ampro Computers, Inc, 1985

11) Steve Ciarcia, ‘‘Build an Intelligent
EPROM Programmer,”” BYTE, October
1981

12) Steve Ciarcia, ‘‘Build a Serial
EPROM Programmer,”’ BYTE, Febru-
ary 1985

74LS138 (U4) 1-of-8 decoder inputs/outputs. Note that all SCSI signals are active

low (0=line asserted, 1=line deasserted.)

C B A
NO/H MSG\) (CDY Selected output goes low
0 0 0 YO (Deselect board) \
0 0 1 Y1 (Address reset) | Write to
0 1 0 Y2 (Address step) | the EPROM
0 1 1 Y3 (Program EPROM) /
1 0 0 Y4 - \
1 0 1 Y5 - | Read from
1 1 0 Y6 - | the EPROM
1 1 1 Y7 (Read EPROM) / <- Bus free

The Computer Journal / #62

+0

4

EB/90/S0 uaszeH AJuel (2)
JEQWNN 3UsWNa0

2

OF '8Z ‘vz ‘22 ‘02
HIWMYHEO0Hd WOHdI 1898 - @ga) O c2
o135 = ocr eETsIY ,.H.«
=" o
Yo (1 PGy N 3 ves WmllL o
. 24 —ord 94 (]
€A
ZA 2
AVI3H 18d0 AS P IBNE B ATy gouY 24 :E o
= ¥a Q303 = nhmwmm. - <RBT —gyd 04 s %nv
AS 232 = €2 = = ¥
X ¥ L _ Loaaner T o _
o o— AG 32 L3 20870
S ¥aes) G A= N 1 T -~ . i}
- i
3AH = aAsT &
T93d ar 5 T IS8 4,
x) vin
oge IE8 =
v =1 . i 2A ZoswL
w K »2E“© € ;] {35,
= 18dS M8 [
23A
%,
x 28
a3y A8 0057 096" =
2 a3z =
-
. >ary—S0Zr>
NG 2T] 4 Y43 og
oce ddp) Ty
oy TreNe
00sW T
PsnOT 43 — (AT g¢
»2 +
3T
Azl
—=ITHR ovasvy QEE
2081V rll.'«lﬁ 9
vy A
1 AN o3
10d0 M8 T M AY 2%
ooz Z— TY TA Y 44
1 Z 7 AV 9%
7 ovasys
HW —=s1q ®
— Y vA
=5 —In i BB :
. 5 2y 2A H
] 13 Y 3A]
== o3
23 ddA ,
A 3o 4
3 apy—4
rEY YA bV
EIV m 234 EA EY N4
siv % 2r 2y g
Frv 37 TA IV 7
o3V IR
av 2
Z n
£0 Ly
Sre &8 , N e bar—
& vo rv L [AR A R
<a ga Y —J €A BY <y
BHE ¥ Y ks
4] 0o ov ¥y 78 2 B LI N
R [N
ozz
J3IA

33

The Computer Journal / #62

 SpocilFestre

MOVING FORTH

by Brad Rodriguez

Part 3: Demystifying DOES>

OOPS!

There’s a colossal mistake in one of my 6809 design decisions in the
previous installment. It became evident when I started to code the
Forth word EXECUTE.

EXECUTE causes the execution of a single Forth word, whose
address is given on the Parameter Stack. (To be precise: the
compilation address, a.k.a. Code Field Address, is given on the
stack.) This can be any kind of Forth word: CODE definition, colon
definition, CONSTANT, VARIABLE, or defined word. This differs
from the usual Forth interpretation process in that the address of the
word-to-execute is given on the stack, and not taken from the
“‘thread’’ (as pointed to by IP).

In our direct-threaded 6809 code this can be easily coded:

EXECUTE: TFR TOSW put address of word in W
PULU TOS pop new TOS
JMP W jump to address given in W

Note: this is JMP W and not JMP [,W], since we already
have the code address of the word. We're not fetching from
the high-level thread. (If TOS wasn't in register, EXECUTE
could be done with simply JMP [[PSP++].)

Now suppose that this EXECUTEd word is a colon definition. W
will be pointing to its Code Field, which contains JMP ENTER.
This does the following (described in the previous article):

JMP ENTER

ENTER: PSHS IP
LDX -2,IP
LEAY 3,X
NEXT

re-fetch the Code Field address

This is the mistake! We are not executing this word from within a
thread, so TP was not pointing to a copy of its Code Field address!
(Remember, the address of the word-to-EXECUTE came from the
stack.) This form of ENTER will not work with EXECUTE, because
there is no way to find the address of the word being executed!

This suggests a new general rule for DTC Forths: if NEXT does
NOT leave the address of the word-being-executed in a register, you
MUST use a Call in the code field.

So, the 6809 Forth is back to using a JSR in the Code Field. But
to avoid the speed penalty for ENTER -- one of the most-used code
fragments in Forth - I'll complete the “‘exercise for the student”
from the last article. Note what happens if you swap the registers

34

assigned to RSP and PSP:
with RSP=§, with RSP=U,
and PSP=U and PSP=S
(previous) (new)
JSR ENTER JSR ENTER

ENTER: PULS W PSHU IPpush old IP onto R stack

PSHS IP PULS IP pop new IP from JSR stack
TFR W,IP NEXT
NEXT

The new version executes in 31 cycles, the same as the JMP version
I had wanted to use. The improvement is because the JSR version
of ENTER must use both Forth’s Return Stack, and the 6809
subroutine-return stack (‘‘JSR stack”’). Using two different stack
pointers means we don’t have to “‘swap”’ the top-of-stack with IP,
eliminating the need for a temporary register.

This illustrates the usual development process for a new Forth
kernel: make some design decisions, write some sample code, dis-
cover a bug or a better way to do things, throw out some code, change
some design decisions, rewrite some sample code, loop until satis-
fied. (This is the programming equivalent of a “‘rip up”” PC board
autorouter.)

This teaches an important lesson: make EXECUTE one of your
benchmark words!

OO0PS, AGAIN

Carey Bloodworth of Van Buren, AR has pointed out a minor but
embarassing mistake in my 6809 code in the previous installment.
For the ‘“TOS-in-memory”” version of 0=, I showed the code frag-
ment

LDD PSP
CMPD #0

to test for top-of-stack equalling zero. In this case, the CMPD
instruction is completly superfluous, since the LDD instruction will
set the Zero flag if D is zero! (The TOS-in-D version still requires
the CMPD instruction, but remains faster than TOS-in-memory.)

Now, on to our main topic:

WHAT'S A CODE FIELD?

The DOES> concept seems to be one of the most misunderstood and
mystifying aspects of Forth. Yet DOES> is also one of Forth’s most
powerful features -- in many ways, it anticipated object-oriented
programming. The action and power of DOES> hinges upon a
brilliant innovation of Forth: the Code Field.

The Computer Journal / #62

Recall from Part 1 that the ‘body’” of a Forth definition consists of
two parts: the Code Field, and the Parameter Field. You can think
of these two fields in several ways:

* The Code Field is the ‘“action’ taken by this Forth word, and the
Parameter Field is the data on which it acts.

* The Code Field is a subroutine call, and the Parameter Field is
parameters that are included ‘“in-line”’ after the call. (The assembly
language programmer’s view.)

* The Code Field is the single ‘‘method’” for this ““class’™ of words,
and the Parameter Field contains the ‘“instance variables” for this
particular word. (The object-oriented programmer’s view.)

Common features appear in all these views:

* The Code Field routine is always called with at least one argu-
ment, namely, the address of the Parameter Field for the Forth word
being executed. The Parameter Field may contain any number of
parameters,

* There are relatively few distinct actions, i.e., relatively few distinct
routines referenced by the Code Field. Each of these routines is
widely shared (except for CODE words, as we will see later).
Recall, for example, the ENTER routine from Part 2: this common
routine is used by all Forth colon definitions.

* The interpretation of the Parameter Field is implicitly determined
by the contents of the Code Field. Le., each Code Field routine
expects the Parameter Field to contain a certain kind of data.

A typical Forth kemel will have several Code Field routines pre-
defined.

Code Field Parameter Field

routine contents

ENTER a high-level “thread" (series of addresses)
DOCON a constant value

DOVAR a storage location for data

DOVOC vocabulary info (varies by implementation)

What makes this feature powerful is that a Forth program is not
limited to this set of Code Field routines (or whatever set is provided
in your kernel). The programmer can define new Code Field
routines, and new Parameter Fields to match. In object-oriented
lingo, new “classes’” and ‘‘methods’’ can be created (although each
class has only one method). And -- like Forth words themselves --
the Code Field actions can be defined in either assembly language
or high-level Forth!

To understand the mechanism of the Code Field, and how param-
eters are passed, we will first look at the case of assembly-language
(machine code) actions. We’ll start with Indirect Threading (ITC),
since it is the easiest to understand, and then see how the logic is
modified in Direct-Threaded (DTC) and Subroutine-Threaded (STC)
Forths. Then, we’ll look at how the Code Field action can be written
in high-level Forth.

Forthwrights are somewhat inconsistent in their terminology, so I’ll
define my terms, using the ITC Forth word illustrated in Figure 1.
The Header contains the dictionary information, and isn’t involved
in the execution of the Forth word. The Body is the ‘“working’’ part
of the word, and consists of the fixed-length Code Field, and the

The Computer Journal / #62

variable-length Parameter Field. For any given word, the locations
of these two fields in memory are the Code Field Address (CFA) and
the Parameter Field Address (PFA), respectively. The Code Field
Address of a word is the address in memory where its Code Field is
located. This is not to be confused with the contents of the Code
Field, which, in ITC Forths, is another different address. To be
specific, the contents of the Code Field is the address of a fragment
of machine code somewhere else in memory. I will refer to this as
the Code Address. Later, when in discussing DTC and STC Forths,
I will also refer to the ““Code Field contents,”” which will include
more than just the Code Address.

MACHINE-CODE ACTIONS
Forth CONSTANTS are probably the simplest example of a ma-
chine-code action. Let’s consider some good Francophone constants

1 CONSTANT UN
2 CONSTANT DEUX
3 CONSTANT TROIS

Executing the word UN will push the value 1 onto the Forth
Parameter Stack. Executing DEUX will push a 2 onto the stack, and
so on. (Don’t confuse Parameter Stack with Parameter Field, they
are entirely separate.)

In the Forth kernel there is a single word called CONSTANT. This
is not a constant-type word itself; it is a high-level Forth definition.
CONSTANT 1is a “‘defining word’’: it creates new words in the
Forth dictionary. Here we create the new *‘constant-type’’ words
UN, DEUX, and TROIS. (You may think of these as *‘instances’’
of the ““class CONSTANT.) These three words will have their
Code Fields pointing to a machine code fragment that does the action
of CONSTANT.

What must this code fragment do? Figure 2 shows the memory
representation of the three constants. All three words point to a
common action routine. The difference in the words is entirely
contained in their Parameter Fields, which, in this case, simply hold
the constant values (‘“instance variables’” in object lingo). So, the
action of these three words should be fetch the contents of the
Parameter Field, and push this onto the stack. The code understands
implicitly that the parameter field contains a single-cell value.

To write a machine-code fragment to do this, we need to know how
to find the Parameter Field Address, after the Forth interepreter
Jjumps to the machine code. That 1s, how is the PFA passed to the
machine-code routine? This, in turn, depends on how the Forth
interpreter NEXT has been coded, which varies from implementa-
tion to implementation. To write machine-code actions, we must
understand NEXT.

The ITC NEXT was described in pseudo-code in Part 1. Here’s one
implementation for the 6809, using Y=IP and X=W:

NEXT: LDX Y++
JMP [X]

i (IP) -> W, and IP+2 -> IP
; (W) -> temp, JMP (temp)

Suppose that we’re in a high-level thread
... SWAP DEUX + ...

with the Interpreter Pointer (IP) pointing to the DEUX “‘instruc-
tion,”” when NEXT is executed. (This would be at the very end of
SWAP.) Figure 3 illustrates what happens. IP (register Y) is
pointing within the high-level thread, at a memory cell that contains
the address of the Forth word DEUX. To be precise, this cell
contains the Code Field Address of DEUX. So, when we fetch a cell

35

using Y, and autoincrement Y, we fetch the Code Field Address of
DEUX. This goes into W (register X), so W is now pointing to the
Code Field. The contents of this field is the address of some
machine code. We can fetch the contents of this cell and jump to the
machine code with a single 6809 instruction. This leaves register X
unchanged, so W is still pointing to the CFA of DEUX. This is how
the Parameter Field Address is obtained, since, in this case, it is
simply two bytes past the Code Field.

So, the machine code fragment has only to add 2 to W, fetch the cell
value at that address, and push that on the stack. This fragment is
frequently called DOCON:

DOCON:LDD 2.X fetch the cell at W+2
PSHU D ; push that on the Parameter Stack
NEXT ; (macro) do the next high-level word

(For this example, TOS is kept in memory.) Note that the previous
NEXT incremented IP by 2, so it is already pointing to the next cell
in the thread (“‘CFA of +*) when DOCON does NEXT.

In general, ITC Forths leave the Parameter Field Address or some
*‘nearby’’ address in the W register. In this case, W contained the
CFA, which in this Forth implementation is always PFA-2. Since
every class of Forth word except CODE words needs to use the
Parameter Field Address, many implementations of NEXT will
increment W to leave it pointing to the PFA. We can do this on the
6809 with one small change:

NEXT: LDX,Y++
JMP [X+4]

; (IP)-> W, and iP+2 -> IP
. (W) -> temp, JMP (temp), W+2 -> W

This adds three clock cycles to NEXT, and leaves the Parameter
Field Address in W. What does it do to the Code Field routines?

W=CFA W=PFA
DOCON:LDD 2,X (6) LDD X (5)
PSHU D PSHU D
NEXT NEXT
DOVAR: LEAX 2,X (5) ; NO operation
PSHU X PSHU X
NEXT NEXT
ENTER: PSHS Y PSHS Y
LEAY 2.X (5) LEAY ,X (4, faster than TFR X.Y)
NEXT NEXT

In exchange for a three-cycle penalty in NEXT, the DOCON code is
reduced by one clock cycle, DOVAR by five cycles, and ENTER by
one cycle. CODE words don’t use the value in W, so they gain
nothing from the autoincrement. The speed gained or lost is deter-
mined by the mix of Forth words executed. The usual rule is that
most of the words executed are CODE words, thus, incrementing W
in NEXT costs a bit of speed overall. (There is a memory savings,
but DOCON, DOVAR, and ENTER appear only once, making this

gain slight.)

The best decision, of course, depends upon the processor. On
machines like the 280, which only access memory by bytes and don’t
have autoincrement address modes, it is often best to leave W
pointing to [P+1 (the last byte fetched from the Code Field). On
other machines, autoincrementing is “‘free,”” and leaving W pointing
to the Parameter Field is most convienient.

Remember: the decision must be made consistently. If NEXT leaves

36

W pointing to the PFA of the word being executed, then EXECUTE
must do likewise! (This was the “oops’ that I corrected at the start
of this article.)

Direct Threading

Direct Threading works just like Indirect Threading, except that
instead of the Code Field containing the address of some machine
code, it contains a JUMP or CALL to some machine code. This
makes the Code Field larger -- e.g., 1 byte larger in the 6809 -- but
removes one level of indirection from the NEXT routine.

The choice of a JUMP or a CALL instruction in the Code Field
hinges upon how the Parameter Field Address can be obtained by the
machine code routine. In order to jump to the Code Field, many
CPUs require that its address be in a register. For instance, the
indirect jump on the 8086 is JMP AX (or some other register), and
on the 280 is JP (HL) (or IX or I'Y). On these processors, the DTC
NEXT involves two operations, which on the 6809 would be:

NEXT: LDX,Y++

JMP X

;(IP)-> W, and IP+2 -> IP
L JMP (W)

(On the 8086, this can be done with LODSW, JMP AX.) The effect
of this is illustrated in Figure 4 as “‘case 1°’. The Code Field
Address of DEUX is fetched from the high-level thread, and IP is
incremented. Then, instead of a fetch, a JUMP is made to the Code
Field Address (i.e., the CPU jumps directly to the Code Field). The
CFA is left in the W register, just like the first ITC example above.
Since this address is already in a register, we can simply put a JUMP
to DOCON in the Code Field, and the DOCON fragment will work
the same as before.

. However, some processors -- such as the 6809 and PDP-11 -- can do

this DTC NEXT in one instruction:

NEXT: JMP[Y++4] i (IP) -> temp, IP+2 -> |P, JMP (temp)

This, too, will cause the CPU to jump to the Code Field of DEUX.
But there’s one big difference: the CFA is not left in any register! So
how is the machine code fragment to find the Parameter Field
Address? By putting a CALL (JSR) in the Code Field instead of a
JUMP. On most CPUs, the CALL 1nstruction will push the return
address - the address immediately following the CALL instruction
-- onto the Return Stack. As Figure 4 illustrates (‘‘case 2°°), this
return address is exactly the Parameter Field Address we want! So,
all DOCON has to do is pop the Return Stack -- balancing the JSR
in the Code Field -- and then use that address to fetch the constant
value. Thus:

DOCON:PULS X ; pop the PFA from the Return Stack

LDD X ; fetch the Parameter Field cell
PSHU D ; push that on the Parameter Stack
NEXT ; (macro) do the next high-level word

Compare this with the ITC version. One instruction has been added
to DOCON, but one instruction has been deleted from NEXT.
DOVAR and NEXT likewise become one instruction longer:

DOVAR: PULS X ; pop the PFA of the word
PSHU X ; push that address on the Parameter Stack
NEXT

ENTER: PULS X ; pop the PFA of the word
PSHS Y ; push the old IP
TFR X,Y ; the PFA becomes the new IP
NEXT

The Computer Journal / #62

Now go back to the beginning of this article, and reread my *“oops,”
to see why we can’t just re-fetch the CFA by using the IP. Also note
the difference when the assignment of Forth’s stack pointers to the
6809’s U and S is reversed.

Subroutine Threading

Subroutine Threading (STC) is like DTC in that the CPU jumps
directly to the Code Field of a Forth word. Only now there is no
NEXT code, no IP register, and no W register. So, there is no choice
but to use a JSR in the Code Field, since this is the only way to
obtain the Parameter Field Address. This process is illustrated in
Figure 5. The high-level ‘‘thread” is a series of subroutine calls
being executed by the CPU. When the JSR DEUX is executed, the
address of the next instruction in the thread is pushed onto the
Return Stack. Then, the JSR DOCON within the word DEUX is
executed, which causes another return address -- the PFA of DEUX
-- to be pushed onto the Return Stack. DOCON can pop that
address, use it to fetch the constant, stack the constant, and then do
an RTS to return to the thread:

DOCON:PULS X : pop the PFA from the Return Stack

LDD X ; fetch the Parameter Field celt
PSHU D ; push that on the Parameter Stack
RTS ; do the next high-level word

We can still speak of a Code Field and a Parameter Field in
Subroutine-Threaded Code. In every “‘class’” of Forth word except
CODE and colon defintions, the Code Field is the space occupied by
a JSR or CALL instruction (just like DTC), and the Parameter Field
is what follows. So, on the 6809, the PFA would equal CFA+3. The
meaning of ‘‘Parameter Field’” becomes somewhat fuzzy in CODE
and colon definitions, as will be seen in future articles.

THE SPECIAL CASE: CODE WORDS

There is a significant exception to all of the above generalizations.
This is CODE definitions -~ Forth words that are defined as a
machine code subroutine. This wonderful capability is trivially easy
to implement in Forth, since every Forth word executes some piece
of machine code!

The machine code comprising a CODE word is always contained in
the body of the Forth word. In an Indirect-Threaded Forth, the Code
Tield must contain the address of the machine code to be executed.
So the machine code is placed in the Parameter Field, and the Code
Field contains the address of the Parameter Field, as shown in
Figure 6.

In Direct- and Subroutine-Threaded Forths, we could -- by analogy
- put, in the Code Field, a JUMP to the Parameter Field. But this
would be pointless, since the Parameter Field immediately follows
the Code Field! The Code Field could be filled with NOPs for the
same result. Better still, the machine code could be started at the
Code Field, and continued into the Parameter Field. At this point
the distinction of ‘‘Code Field’’ and ‘‘Parameter Field”” breaks
down. This is no problem, because we don’t need this distinction
for CODE words. (This does have ramifications for decompilers and
certain clever programming tricks, none of which concern us here.)

CODE words -- whatever the implementation - are the one case
where the machine code *‘action’” routine does not need to be passed
the Parameter Field address. The Parameter Field contains, not
data, but the code being executed! Only NEXT needs to know this
address (or the Code Field Address), so it can jump to the machine
code.

The Computer Journal / #62

USING ;CODE
Three questions remain unanswered:

a. how do we create a new Forth word that has some arbitrary data
in its Parameter Field?

b. how do we change the Code Field of that word, to point to some
machine code of our choosing?

¢. how do we compile (assemble) this machine code fragment, which
exists in isolation from the words using it?

The answer to (a) is: we write a Forth word to do this. Since this
word, when executed, will define (create) a new word in the Forth
dictionary, it is called a “‘defining word.”” CONSTANT is one
example of a defining word. All of the ‘‘hard work”’ of a defining
word is done by a kernel word, CREATE, which parses a name from
the input stream, builds the header and Code Field for a new word,
and links it into the dictionary. (In fig-Forth this word 1s called
<BUILDS.) All that remains for the programmer is to build the
Parameter Field.

The answer to (b) and (c) is embodied in two convoluted words
called (;CODE) and ;CODE respectively. To understand how they
work, let’s look at how the defining word CONSTANT is actually
written in Forth, Using the original ITC 6809 example:

:CONSTANT (n-)
CREATE \ create the new word
, \ append the TOS value to the dictionary,
\ as the 1st cell of the Parameter Field

:CODE \ end high-level & start assembler code
LDD 2.X \ the code fragment DOCON

PSHU D Voo "

NEXT \ " " " 1

END-CODE

There are two parts to this Forth word. Everything from : CON-
STANT to ;CODE is the high-level Forth code executed when the
word CONSTANT is invoked. Everything from ;CODE to END-
CODE is machine code executed when the *‘children’” of CON-
STANT - the ‘ ‘constani-class’* words such as UN and DEUX -- are
executed. That is, everything from ;CODE to END-CODE is the
code fragment to which constant-type words will point. The name
;CODE signifies that it ends a high-level definition (*‘;”") and begins
a machine-code definition (‘“CODE"’). However, this is not put into
the dictionary as two separate words. Everything from : CON-
STANT to END-CODE is contained in the Parameter Field of
CONSTANT, as shown in Figure 7.

Derick and Baker [DERS82] name three ‘‘sequences’” that help to
understand the action of defining words:

Sequence 1 is when the word CONSTANT is being defined. This
involves both the high-level compiler (for the first part) and the
Forth assembler (for the second part). This is when the definition
of CONSTANT shown in Figure 7 is added to the dictionary. As we
will see shortly, ;CODE -- a compiler directive - is executed during
Sequence 1.

Sequence 2 is when the word CONSTANT is being gxecuted, and

when some constant-type word is being defined. In the example
2 CONSTANT DEUX

Sequence 2 is when the word CONSTANT executes, and the word

DEUX is added to the dictionary (as shown in Figure 7). During

37

Sequence 2, the high-level part of CONSTANT is executed, includ-
ing the word (;CODE).

Sequence 3 is when the constant-type word is executed. In our
example, Sequence 3 is when DEUX is executed to push the value
2 onto the stack. This is when the machine-code part of CON-
STANT is executed. (Recall that this fragment is the Code Field
action of DEUX.)

The words ;CODE and (;CODE) do the following;

;CODE is executed during Sequence 1, when CONSTANT is
compiled. This is an example of a Forth IMMEDIATE word - a
word executed during the Forth compilation. ;CODE does three
things:

a. it compiles the Forth word (;CODE) into CONSTANT,
b. it turns off the Forth compiler, and
¢. it turns on the Forth assembler.

(GCODE) is part of the word CONSTANT, so it executes when
CONSTANT executes (Sequence 2). It performs the following
actions:

a. It gets the address of the machine code that immediately follows.
This is done by popping IP from the Forth Return Stack.

b. It puts that address into the Code Field of the word just defined
by CREATE. The Forth word LAST (sometimes LATEST) gets the
address of that word.

¢. It does the action of EXIT (ak.a. ;S) so that the Forth inner
interpreter doesn’t try to execute the machine code that follows as
part of the Forth thread. This is the high-level **subroutine return’
which ends a Forth thread.

F83 [LAX84] illustrates how these are typically coded in Forth:

:;CODE
COMPILE (;CODE) \ compiles (;CODE) into definition
?CSP [COMPILE] \ turns off the Forth compiler
REVEAL \ (just like *;" does)
ASSEMBLER \ turns on the assembler
; IMMEDIATE \ this is an IMMEDIATE word!

: (;CODE)
R> \ pops the adrs of the machine code

LAST @ NAME> \gets the CFA of the latest word
! \ stores the code address in the
; \ Code Field

(;:CODE) is the more subtle of the two. Since it is a high-level Forth
definition, the address following it in the CONSTANT thread - the
high-level ““return address>> -- is pushed onto Forth’s Return Stack.
So, popping the Return Stack while within (;CODE) will yield the
address of the machine code that follows. Also, popping this value
from the Return Stack will ““bypass’” one level of high-level subrou-
tine return, so that when (;CODE) exits, it will exit to the caller of
CONSTANT. This is equivalent to returning to CONSTANT, and
then having CONSTANT return immediately. Use Figure 7 and
walk through the execution of the words CONSTANT and (;CODE)
to see how this works.

38

Direct and Subroutine Threading

For DTC and STC, the action of ;CODE and (;CODE) is identical
to ITC, with one important exception: instead of holding an address,
the Code Field holds a JUMP or CALL instruction. For an absolute
JUMP or CALL, probably the only difference is that the address has
to be stored at the end of the Code Field, as the operand of the JUMP
or CALL instruction. In the case of the 6809, the address would be
stored as the last two bytes of the three-byte JSR instruction. But
some Forths, such as Pygmy Forth on the 8086, use a relative branch
in the code field. In this case, the relative offset must be computed
and inserted into the branch instruction.

HIGH-LEVEL FORTH ACTIONS

We have seen how to make a Forth word execute a chosen fragment
of machine language code, and how to pass that fragment the address
of the word’s Parameter Field. But how do we write the “‘action
routine’’ in high-level Forth?

Every Forth word must -- by the action of NEXT — execute some
machine language routine. This is what the Code Field 1s all about.
Therefore, a machine language routine, or a set of routines, 1s needed
to handle the problems of invoking a high-level action. We’ll call
this routine DODOES. There are three problems to be solved:

a. how do we find the address of the high-level action routine
associated with this Forth word?

b. how do we, from machine code, invoke the Forth interpreter for
a high-level action routine?

c. how do we pass that routine the address of the Parameter Field for
the word we are executing?

The answer to (¢} -- how do you pass an argument to a high-level
Forth routine -- is easy. On the Parameter Stack, of course. Our
machine language routine must push the Parameter Field Address on
the stack before it invokes the high level routine. (From our
previous work, we know how the machine language routine can
obtain the PFA.)

The answer to (b) is a bit more difficult. Basically, we want to do
something like the Forth word EXECUTE, which invokes a Forth
word; or perhaps ENTER, which invokes a colon definition. Both
are among our ‘‘key’’ kemel words. The DODOES code will
resemble these.

Question (a) is the tricky one. Where to put the address of the high-
level routine? Remember, the Code Field does not point to high-
level code, it must point to machine code. Two approaches have
been used in the past:

1. The fig-Forth solution. Fig-Forth reserved the first cell of the
Parameter Field to hold the address of the high-level code. The
DODOES routine then obtained the Parameter Field address, pushed
the address of the actual data (typically PFA+2) onto the stack,
fetched the address of the high-level routine, and EXECUTEA.

There were two problems with this approach. First, the structure of
the Parameter Field was different for machine-code actions and
high-level actions. For example, a CONSTANT defined with a
machine code action would have its data stored at PFA, but a
CONSTANT defined with a high-level action would have its data
stored at (typically) PFA+2.

The Computer Journal / #62

Second, every instance of a high-level-action class carried an addi-
tional overhead of one cell. That is, if CONSTANT used a high-
level action, every constant defined in the program was one cell
larger!

Fortunately, clever Forth programmers quickly devised a solution
which overcame these problems, and the fig-Forth approach has
fallen into disuse.

.2. The modern solution. Most Forths nowadays associate a differ-
ent machine language fragment with each high-level action routine.
So, a high-level constant would have its Code Field pointing to a
machine language fragment whose sole function is to invoke the
high-level action of CONSTANT. A high-level variable’s Code
Field would point to the *“startup’” routine for the high-level VARI-
ABLE action, and so on.

Is this excessive duplication of code? No, because each of these
machine-language fragments is just a subroutine call to a common
startup routine, DODOES. (This 1s different from the fig-Forth
DODOES routine.) The address of the high-level code to DODOES
is passed as an ‘“inline’’ subroutine parameter. That is, the address
of the high-level code 1s put immediately after the JSR/CALL
instruction. DODOES can then pop the CPU stack and do a fetch
to obtain this address.

Actually, we make two more simplifications. The high-level code
itself is put immediately after the JSR/CALL instruction. Then
DODOES pops the CPU stack, and obtains this address directly.
And since we know this is high-level Forth code, we dispense with
its Code Field and just compile the high-level thread.. essentially
incorporating the action of ENTER into DODOES.

Now each ‘“defined”” word just points to a bit of machine code...no
space is consumed in its Parameter Field. This bit of machine code
is a JSR or CALL instruction, followed by the high-level action
routine. In the 6809 example, we have traded two bytes in every
constant for a three-byte JSR that appears only once.

This is undoubtedly the most convoluted program logic in the entire
Forth kernel! So, let’s see how this is implemented in practice,
using our trusty ITC 6809 example.

Figure 8 shows the constant DEUX implemented with a high-level
action. When the Forth interpreter encounters DEUX -- that is,
when the Forth IP is at [P(1) -- it does the usual thing; it fetches the
address contained in DEUX’s Code Field, and jumps to that address.
At that address is a JSR DODOES instruction, so a second jump --
this time a subroutine call -- is immediately taken. DODOES must
then perform the following actions:

a. Push the address of DEUX’s Parameter Field onto the Parameter
Stack, for later use by the high-level action routine. Since the JSR
instruction does not alter any registers, we expect to find the Param-
eter Field Address of DEUX (or a “‘nearby’” address) still in the W
register.

b. Obtain the address of the high-level action routine, by popping the
CPU stack. (Recall that popping the CPU stack will give the address
of whatever immediately follows the JSR instruction.) This is a
high-level thread, 1.e., the Parameter Field part of a colon definition.

c. Save the old value of Forth’s Instruction Pointer -- IP(2) -- on

The Computer Journal / #62

Forth’s Return Stack, since the IP register will be used to execute the
high-level fragment. Essentially, DODOES must ‘‘nest’” the IP, just
like ENTER does. Remember that Forth’s Return Stack may not be
the same as the CPU subroutine stack.

d. Put the address of the high-level thread into IP. This is IP(3) in
Figure 8.

e. Do a NEXT to continue high-level interpretation at the new
location.

Assume an indirect-threaded ITC 6809, and the following:

* W is not incremented by NEXT (i.e., W will contain the CFA of
the word entered by NEXT);

* the 6809 S is Forth’s PSP, and U is Forth’s RSP (i.e., the CPU
stack is not Forth’s Return Stack),

* the 6809 Y is Forth’s IP, and X is Forth’s W,

Recall the definition of NEXT for these conditions:

NEXT: LDX , Y++

JMP [X]

; (IP) > W, and IP+2 -> IP
; (W) -> temp, JMP (temp)

DODOES can be written as follows:

DODOES: LEAX 2,X , make W point to the Parameter Field

PSHUY » () push old IP onto the Return Stack
PULSY ; (b,d) pop new IP from the CPU stack
PSHS X ; () push W (the Parameter Field

; Address) onto the Parameter Stack
NEXT ; (e) invoke high-level interpreter

These operations are slightly out of sequence. As long as the nght
things go onto the right stacks (or into the right registers) at the right
time, the exact order of operations is not critical. In this case, we’re
taking advantage of the fact that the old IP can be pushed onto
Forth’s Return Stack before the new IP is popped from the CPU
stack.

On some processors the CPU stack 1s used as Forth’s Return Stack.
In this case, one step involving temporary storage is necessary. If we
had chosen S=RSP and U=PSP above, DODOES would be:

DODOES:LEAX 2, X , make W point to the Parameter Field

PSHU X , (@) push W (the Parameter Field

; Address) onto the Parameter Stack
PULS X ; (b) pop thread address from CPU stack
PSHS Y ; (¢) push old IP onto the Return Stack
TFR XY ; (d) put thread address into IP
NEXT ; (e) invoke high-level interpreter

Since we are essentially swapping the top of the Return/CPU stack
with IP, we need to use X as a temporary holding register. Thus we
must push the PFA -- step (a) -- before re-using the X register.

Walk through both of these DODOES examples step by step, and
track the contents of the registers and the two stacks. Ialways walk
through my DODOES routine, just to make sure I'm not clobbering
a register at the wrong time.

Direct Threading

The logic of DODOES is the same in DTC Forths. But the imple-
mentation may be different, depending on whether the DTC Forth
uses a JMP or a CALL in the Code Field of a word.

39

a. JMP in Code Field. A DTC Forth can use a JMP in the Code

Field if the address of the word being executed is found in a register.
This will most likely be the Code Field Address.

From the point of view of DODOES, this is identical to ITC. In our
example, DODOES sees that the Forth interpreter jumps to the
machine code associated with DEUX, and that code is a JSR to
DODOES. It doesn’t matter that the first jump is now a direct jump
rather than an indirect jump; the register and stack contents are the
same. So, the code for DODOES will be identical to that for ITC.
(Of course, NEXT is different, and W may need a different offset to
point to the Parameter Field.)

b. CALL/JSR in Code Field. In the DTC 6809, we never explicitly
fetch the CFA of the word being executed, so the Forth word must
contain a JSR in its Code Field. Instead of finding the Parameter
Field Address of the Forth word in a register, we find it on the CPU
stack.

The DEUX example in this case is shown in Figure 9. When the
Forth [P is at IP(1), the Forth interpreter jumps to the Code Field of
DEUX (and increments IP). In the Code Field is a JSR to DEUX’s
machine code fragment. At that address is a second JSR, to DO-
DOES. So two things get pushed onto the CPU stack. The return
address of the first JSR is the Parameter Field address of DEUX.
The return address of the second JSR -- and thus topmost on the CPU
stack - is the address of the high-leve} thread to be executed.
DODOES must ensure that the old IP is pushed onto the Return
Stack, the PFA of DEUX is pushed onto the Parameter Stack, and
the address of the high-level thread is loaded into IP. This is very
sensitive to stack assignments! For S=PSP (CPU stack) and U=RSP,
the NEXT and DODOES code is:

NEXT: LDX[Y++] ; (IP) -> temp, IP+2 -> IP, JMP (temp)

DODOES: PSHU Y
PULS Y

; push old IP onto the Return Stack

; pop new IP from the CPU stack

; note: the CPU stack is the Parameter
; Stack, and the topmost element is

; now the PFA of the word...

: exactly what we want!

NEXT ; invoke high-level interpreter

Check for yourself that the flow through NEXT, DEUX, and DO-
DOES pushes a net total of one item -- the PFA of DEUX -- onto the

Parameter Stack!

Subroutine Threading

In STC Forths, there are no IP or W registers, and a high-level
“‘thread”” is pure machine code (a series of subroutine calls). The
only difference between a high-level action and a ;CODE action is
that the PFA of the ‘‘defined”’ word must be pushed onto the
Parameter Stack. ‘‘Defined’’ words have a CALL/JSR in the Code
Field, and the CPU stack must be Forth’s Return Stack, so DODOES
is mostly a matter of stack manipulations.

Figure 10 shows a 6809 STC example of DEUX with a high-level
action. By the time DODOES is entered, three things have been
pushed onto the CPU/Return Stack: the return address in the *‘main”™
thread, the PFA of DEUX, and the address of DEUX’s high-level
action code. DODOES must pop the last two, push the PFA onto
the Parameter Stack, and jump to the action code:

DODOES: PULS X,Y
PSHUY

; action code adrs -> X, PFA-> Y
; push PFA onto Parameter Stack

JMP X ; jump to the action code

DODOES for the 6809 is now a three-instruction routine. It can be
simplified even further by ‘‘expanding JSR DODOES in-line,” i.e.,
replacing the JSR DODOES with the equivalent machine code
instructions. Since there’s one less JSR, this simplifies the stack
manipulation to:

PULS X
PSHU X

; pop PFA from CPU stack
; and push it onto the Parameter Stack
...high level thread for DEUX...

This replaces a three-byte JSR with four bytes of explicit code, with
a considerable improvement in speed. For the 6809 this would
probably be a good choice. For a processor like the 8051, DODOES
is long enough that it should be kept as a subroutine.

USING DOES>

We learned with ,CODE how to create a new Forth word with
arbitrary data in its parameter field, and how to make that word’s
Code Field point to a new machine code fragment. How do we
compile a high-level action routine, and make a new word point to
it?

The answer lies in the two words DOES> and (DOES>), which are
the high-level equivalents of ;CODE and (;CODE). To understand
them, let’s look at an example of their use:

:CONSTANT (n-)
CREATE \ create the new word
\append the TOS value to the dictionary,
\ as the 1st cell of the Parameter Field
DOES> \end “create” part & start “action” part
e \ given the PFA, fetch its contents

Compare this with the previous ;CODE example, and observe that
DOES> performs a function analogous to ;CODE. Everything from
: CONSTANT to DOES> is executed when the word CONSTANT
is invoked. This is the code which builds the Parameter Field of the
“‘defined’” word. Everything from DOES> to ; is the high-level
code executed when the “‘children”” of CONSTANT (such as DEUX)
are invoked, i.e., the high-level fragment to which the Code Field
will point. (We’ll see that a JSR DODOES is included before this
high-level fragment.) Just as with ;CODE, both the “‘create’” and
the “‘action’” clauses are contained within the body of the Forth
word CONSTANT, as shown in Figure 11.

Recall Sequence 1, 2, and 3. The words DOES> and (DOES>) do
the following:

DOES> is executed during Sequence 1, when CONSTANT is
compiled. Thus DOES> is a Forth IMMEDIATE word. It does two
things:

a. It compiles the Forth word (DOES>) into CONSTANT.

b. It compiles a JSR DODOES into CONSTANT.

Note that DOES> leaves the Forth compiler running, in order to
compile the high-level fragment which follows. Also, even though

JSR DODOES is not itself Forth code, an IMMEDIATE word such
as DOES> can cause it to be compiled in the middle of Forth code.

(DOES>) is part of the word CONSTANT, so it executes when

The Computer Journal / #62

CONSTANT executes (Sequence 2). It does the following:

a. It gets the address of the machine code that immediately follows
(JSR DODOES), by popping IP from the Forth Return Stack.

b. It puts that address into the Code Field of the word just defined
by CREATE.

c. It performs the action of EXIT, causing CONSTANT to terminate
here and not attempt to execute the fragment that follows.

The action of (DOES>) is identical to (CODE)! A separate word is
not strictly required. F83, for example, uses (;CODE) in both
:CODE and DOES>. [I’ll use (,CODE) from now on instead of
(DOES>).

You’ve already seen the workings of (;CODE). The F83 definition
of DOES> is

: DOES>
COMPILE (;CODE) \ compiles (;CODE} into definition
OE8C, \the CALL opcode byte
DODOES HERE 2+ -, \the relative offset to DODOES
; IMMEDIATE

where DODOES is a constant which holds the address of the
DODOES routine. (The actual F83 source code is slightly different,
due to the requirements of the F83 metacompiler.) DOES> need not
fiddle with CSP or the smudge bit, since the Forth compiler 1s left
“on.”” In the case of the 8086, the CALL instruction expects a
relative address.. hence the arithmetic involving DODOES and HERE.
In the 6809, DOES> would look like

: DOES>
COMPILE (;CODE) \ compiles (;CODE) into definition
08D C, \the JSR Extended opcode byte

FIGURE 1. AN ITC FORTH WORD

<«— header—>

body
Code Fle]d Parameter Field
{ 3 FOO link | \]

Code Field Address \ Parameter Field Address

machine code somewhere

FIGURE 2. THREE CONSTANTS
hmk | oy | 1 |

\

W12

\\

NVEERR

code to push the contenss of the
Parameter Field onto the stack

| 2 UN

[4 DEUX fink |

[5 TROIS fink |

The Computer Journal / #62

DODOES,
; IMMEDIATE

\the operand: address of DODOES

You can see here how the machine language JSR DODOES is
compiled after the high-level (;CODE), and before the high-level
‘“‘action’’ code.

Direct and Subroutine Threading

The only difference in DTC and STC is how the Code Field is
fiddled to point to a new routine. This is done by (;CODE), and the
required changes have already been described. DOES> isn’t af-
fected at all, unless you’re writing an STC Forth and expanding the
JSR DODOES to explicit machine code. In this case, DOES> is
modified to assemble the *‘in-line”” machine code instead of a JSR
DODOES instruction.

ONWARD AND UPWARD

Who would have thought that so few lines of code would require so
much explanation? This is why I admire ;CODE and DOES> so
much.. I've never before seen seen such intricate, powerful, and
flexible constructs coded with such economy.

In the next installment I'll discuss the merits of assemblers vs.
metacompilers, and provide the actual CODE definitions for our
Forth example systems.

REFERENCES

[DER82] Derick, Mitch and Baker, Linda, Forth Encyclopedia,
Mountain View Press (1982). A word-by-word description of fig-
Forth in minute detail. Still available from the Forth Interest Group,
P.O. Box 2154, Oakland CA 94621.

[LAX84] Laxen, H. and Perry, M., F83 for the [BM PC, version
2.1.0 (1984). Distributed by the authors, available from the Forth
Interest Group or GEnie.

FIGURE 3. ITC BEFORE AND AFTER "NEXT"

CFA of

BN Tof l CF.:mf ' a "thread"
Il; IPaﬁer
[4DEUX tik | | 2 |
[
W a‘fter machine code "DOCON"

FIGURE 4. DTC BEFORE AND AFTER "NEXT"

CFA of

S CTAOf l CFAof l a "thread”
/
jig
L“ DEUX link :?IfDOCONI X 2 I
w after \J SR "return address”
(case 1) (case2)
41

Pa121Ud NODOKT UoyM (1151301 X 5,6089) M.
‘\
[¢ | | Owmm xnaa v

e UDNOI UOTIE -.35ed 918, -

_ 10 Vi) _ .«oﬂoﬁ‘ SFOQOA AST

oe_ O VD 1._.5:_ Jospe] T INV.SNOD $ |

-NODOd.

<SFOA 211 ‘T1T TANDIA

(NODOQ Ut sur-ut papuedxa aq jydrur)
3aped auryoeWw STOAOA

~ ~

[s1d4 @ ¥st [saoaoa ¥s] .NOOOA.

NODOQ 1Y¥ \
Yied ampy

{ 7 |novoaust| yum xnaa v i

e
e,
——
~—__

prarys, e o+ | sust | xnaquse | avmsusr |

SHOAOd DLS "0 TANDIA

poysnd ssa1ppe puz 9p0d durgdel STOGOA
~a \

[pranp yuoy 12491 43 [S30A0OA ¥SY| LNODOA.

poysnd ssaippe is| \
Ay

ﬁ z Toumh;m-_ Jun X0dq v[_
@a :E

\

prag e o [oo X A PYD

SHOAO0d D14 ‘6 HANODIA

(£)dI 3poo aulyorw SFOAOA
N el

| peasp yuod a3 43y Jsg0a0Q ASH

\ A U1 SIOAL § |
[z T XNAA ¥ | > WINOC
@d1 / (1d1
\

. dVMS

SHOAOA DAI '8 TANOIA

PRI91ua NODO usys (32151821 X 5,6089) M.
!
'3

[z] T tww xnaa v |
- Juduwi3ely 9poo umyorWw < 1red [3A3] Y3y -»
| 1xaN_anisd xzaal |ROO0 | BLYRNI000A] woy nvisnoo s |
.NODOd,

FAO0D* D41 "L TANDIA

{ dnqioyspodaumyorw | yug dnd v | DLSJo QLA

[dng sojepooauoews |, | yu dna v | OLI
\—vy

SMIOM FAOD 9 TANDIA

paysnd ssaippe pug q

4
z [noooaust] oy xnsa v |

paysnd ssaappe aﬂ/ u.S.«oa od

peary, e +ust | xnaawst _ dVAS ST |

HAOD dAAVIYHL ANLLNOY NS S TANDIA

The Computer Journal / #62

42

Programming the 6526 CIA

By Ralph Tenny

 Special Feature |

Introductory Programming

~ UOinBASIC

INTRODUCTION

Much of the power of the Commodore 64 comes from the two 6526
Complex Interface Adapter (CIA) integrated circuits. If you want to
program the C64 hardware, this article should help you. The VO
functions of the CIAs are listed in Table 1. A single 6526 consists
of the A Port (PAO-PA7) and the B Port (PB0-PB7) and four other
programmable lines. Just as with every other important section of
the computer, each 6526 has a unique address known as the base
address. That is, the first register in the IC is addressed at the base
address. Each other register has an offset from that address. Table
2 lists the registers of a CIA and the offset of each. The base address
of each CIA is given in Table 1.

TABLE 1 CIA FUNCTIONS

U1 - Base Address 56320 ($DCO00)

PAO - PA7: Keyboard column strobes, Joystick B, Paddle Multiplex.
PBO - PB7: Keyboard Row input, Joystick A, Fire Button/Light Pen.
SP1: Shift Register #1 1/O - User Port.

CNT1: Count input - User Port.

PC: Qutput handshake line - not used.

FLAG*: Input Handshake/Interrupt input for Serial Bus.

Timers (2): System use.

Time of Day Clock: Available for User.

U2 - Base Address 56576 ($DD00)

PAO - PA1: Memory Address Mapping.

PA2 - PA3: User Port.

PA4 0- PA7: |EEE Bus control & Data.

SP2: shift Register #2 1/O - User Port.

CNT2: count input - User Port.

PC: Output Handshake - User Port

FLAG: input Handshake/Interrupt - User Port.
Timers (2): Available for user.

Time of Day Clock - Available for user.

TABLE 2 - CIA REGISTER OFFSETS

Register Offset
Port A 0
Port B +1
Data Direction A +2
Data Direction B +3
Timer A Low Byte +4
Timer A High Byte +5
Timer B low Byte +6
Timer B High Byte +7
TOD Clock, .1 sec. +8
TOD Clock, 1 sec. +9
TOD Clock, 1 Min. +10
TOD Clock, 1 Hour +11

Serial Data Buffer (SDB) +12
Interrupt Control (ICR) +13
Control Register A (CRA) +14
Control Register B (CRB) +15

The Computer Journat / #62

Let’s examine the abilities and characteristics of the 6526 with some
simple experiments. Some of the CIA functions are easily exercised
using BASIC, and others are more easily controlled using assembly
language. A number of programming experiments will show CIA
operation easily, and generate some fun besides!

It will be helpful if you have a voltmeter or logic probe to confirm
the results of some of the experiments. Figure 1 shows the pinout
of the User Port as you face the rear of the computer. Figure 2 shows
the pinout and connections for a connector which fits onto the User
Port. The measurements can be made without a connector, but not
as easily. The assembly language experiments will be described as
if the HESMON®64 cartridge is being used, but you should be able
to translate the procedures to use whichever debug monitor you
have. We will consider the /O lines according to the type of port
line and programming style required to drive the lines.

THE USER PORT /O LINES

The User Port has three types of programmable lines, and uses lines
from both 6526s in the C64. The regular port lines (PB)-PB7) are
directly programmable. PA2 and PA3 must be programmed using
logical operators such as AND and OR. The two SP lines can be
used as special signal lines, and are indirectly programmed. Finally,
there are two non-programmable lines which respond automatically
to data transfers, helping you to make data transfers.

The B Port consists of two CIA registers which work together to
control eight /O lines (PB0-PB7). The Data Direction Register
(DDR) allows you to program each port line as either input or
output. The DDR consists of eight bits, one for each port line. If
a DR bit is set to logic zero, the corresponding port line is set for
input. A logic one programs the line as an output. Once the DDR
has been programmed, you can input or output data on the port.
After programming, the port outputs a copy of the data written to the
port or reads the logic levels connected to the port.

Let’s try an example. Plug in the connector and voltmeter or logic
probe and the HESMON®64 in place, the computer will come up
running the monitor program. Go into BASIC by typing XC fol-
lowed by RETURN. (We will call that key sequence RESET.) Use
the voltmeter or logic probe to verify that pins C-M of the connector
plug are at logic one. This happened because BASIC programs the
port lines for input during startup. When these lines are set to input,
the pins read the logic level imposed from the outside world. If the
pins aren’t connected to a voltage source, an internal pullup resistor
pulls each line high. That level is what you just read on the port.

Let’s write data to the Port by setting Bit0 of the DDR to logic 1
(make Bit0 an output). In BASIC, use this the command:

POKE 56579,1

43

Read the port kines again; pin 22 (PBO0) will now be at logic zero.
Why did the port line change state when all we did was assign BIT0
as an output? BASIC is to blame again!. At the same time that the
DDR was set to all zero (input), so was the Port Register. Since PBO
could not output a zero until it was set for output, you read the pullup
resistor. Let’s try to prove that. RESET your computer, then enter
XC to go back to BASIC. Enter these two BASIC commands:

~ POKE 56577,255
POKE 56579,1

Now, when you read the port, you find that PBO stayed at logic one.
That’s because the first command wrote all ones to the Port Register,
then the second changed PBO to output. Remember that sequence!
We wrote to the Port Register while the port was programmed for
input. Nothing changed on the output until we programmed for
output. That sequence allows you to set up port lines while a
program is starting up, rather than allowing an unknown output
condition before you are ready for output!

Let’s experiment with HESMONG64 a little. RESET the computer
and note that HESMONG64 is running. Type MDDOO0 followed by
RETURN. You see the following display:

DDO0 97 FF 3F 00 0A 00 FF FF

Some graphics characters also appear to the right of the display, but
we will ignore them. Let’s be sure you know how to interpret that
display. DDOO is the hexadecimal address of the <97 byte. *“FF”’
appears next and is located at $DDO1. The last FF shown is the
seventh byte displayed after 97, so its address is $DD00 + 7 =
$DDO07. See Tables 1 & 2 for a listing of the CIA registers and their
locations.

Before we do more experiments, let’s agree on some shorthand
notations. Your input will be shown in italics and the HESMON
response will be shown in normal characters. (ret) will signify
- pressing the RETURN key. We will describe the experiment and
then discuss the results:

Assign PB0-PB3 as input and PB4-PB7 as output by writing $F0 to
$dd03 (DDR). Then, write 00 to $DDO1 (Port B) and try to read it
back.

What do you read? With no external input, you will read back $OF.
Verify this by reading the outputs of the Port. The following display
illustrates that sequence. (In HESMON, memory modification is
performed by positioning the cursor on a displayed memory value,
then entering the new value.) In the display below, this is simulated
by showing the new entry immediately below the byte to be changed:

MDDOO(ret)

:DDO00 97 FF 3F FF FF FF FF FF
FO(ret)

MDDOO(ret)

:DDO0 97 FF 3F FOFF FF FF FF
FO(ret)

MDDO0O(ret)

:DDO0 87 OF 3F FO FF FF FF FF

We probably could do that experiment in BASIC, but the nature of
PEEKs and POKEs would confuse the outcome. We easily pro-
grammed the User Port lines PBO-PB7 in BASIC, but using BASIC
for the other I/O lines is more difficult.

44

PA2 and PA3

You must use great care when you program PA2 and PA3, and use
them only for output. You must not change the data direction
assignments or output levels of PAO and PA1! If you do, you modify
the memory mapping of the computer and it will crash. However,
you can change the data for PA2 and PA3 so long as you do it
carefully. The problem is simple: change only Bits 2 and 3 in both
registers! Table 3 lists data values and logic operations which need
to be used to change PA2 and PA3.

TABLE 3 - SHOWING SINGLE-BIT LOGIC OPERATIONS

To Set Bit High, To Set Bit Low,
Bit# OR Data with: AND Data With:
7 $80 (128) $7F (127)

6 $40 (64) $BF (191)

5 $20 (32 $DF (223)

4 $10 (16) $EF (239)

3 $08 (8) $F7 (247)

2 $04 (4) $F8 (251)

1 $02(2) $FD (253)

0 $01 (1) $FE (254)

Let’s start this experiment by reading the logic levels of PA2 and
PA3. Clear the computer with RESET and XC to get to BASIC.
Enter this command:

PRINT PEEK(56576)

The response should be 151; this translates to $97 in hexadecimal.
Similarly, PRINT PEEK(56578) returns 63 ($3F). Let’s look at
those two values in binary:

Bit# 76543210
$97 = 10010111 (port data)
$3F = 00111111 (DDR)

This tells us that PA2 and PA3 are programmed for output, with PA2
high and P3 low. When you check the port output, PA3 will be high.
Note that this disagrees with what HESMON reported. (PA3’s
output is inverted because PA3 drives User Port pin 19 and one line
on the Serial Bus through an inverter.) Remember the logic levels
you measured while we change the logic level of PA2 and PA3.

The required sequence for controlling PA2 or PA3 of U2 is to set bits
high with a logical OR and to set bits low with a logical AND
operation as shown in Table 3. For example, to set PA3 for input,
this sequence will work:

A=PEEK(56578):A=A AND 247:POKES6578,A

If PA2 had been programmed for input, this sequence would have set
it for output:

A=PEEK(56578:A=A OR 4:POKE56578,A

This assembly language instruction sequence will set PA2 high:
LDA #3$04 ;BIT MASK FOR BIT2 = HIGH

ORA $DDO00 ;COMBINE WITH PORT DATA

STA $DD0OO ;MODIFY PORT

If you study the two routines for modifying PA2, you can see they are
exactly the same type of operation, expressed in two different

languages.

The Computer Journal / #62

SP LINES

Let’s see how to manipulate the two SP lines. Figure 3 shows the
bit assignments of the CRA. The Shift Registers are set for input by
setting Bit 6 of the CRA to 0, a logic one sets the Shift Register for
output. When programmed for input, the SP line goes high; it goes
low when the Shift Register is programmed for output. The two
programs below toggle (change the logic state of) the two SP lines
repetitively. The BASIC program addresses SP1 and the assembly
language program toggles SP2. If you have a logic probe, compare
the activity at pin 5 of the Port for SP1 and pin 7 for SP2. Some logic
probes will show enough difference to tell you theat SP2 is changing
much faster. The assembly language program is almost 1000 times
faster! '

5 REM TOGGLE SP1
10 POKE 56334,65
20 POKE 56334,1

30 GOTO10

;TOGGLE SP2
IN LDA #$48
STA $DDOE
LDA #$08

STA $DDOE
BNE IN

Let’s discuss a small difference between these two programs. In
BASIC we Poke 65 (41) and 1 for SP1, but for SP2 we write $48 and
$08. The difference is that Timer A on Ul is a system timer. Bit
3 = 0 means the timer is free running, and Bit 1 = 1 means that the
timer has been started. If you write $00 to $DCOE (turn off Bit 0),
the keyboard tumns off and you must either turn the computer off and
then on or short pin 3 of the Port to ground (hardware RESET) to get
the keyboard operational. On SP2, $08 means that Timer A on U2
is set for one-shot mode and has not been triggered.

HANDSHAKE LINES

PC2 is a special strobe line which automatically makes a handshake
with any device tied to Port B. A handshake means that the port
signals when it has processed some data. For example, a write to
Port B when it is programmed for output will cause PC to go low for
about one microsecond and then back high. If Port B is set for input,
PC will pulse low right after the data have been read. FLAG is an
input handshake signal for Port B which can be used by an external
device to signal that new data is ready on the port. Whenever FLAG
is pulled low, bit 4 of the Interrupt Control Register ($DCOD on Ut
and $DDOD on U2) is set high. You can read this bit using:

DATAIN LDA $DDOD ;GET FLAG STATUS
AND #8310 ;TEST BIT 4

BEQ NOTHI ;BRANCH TAKEN IF NO DATA
DATA LDA $DDO01 ;READ DATA

STA $2000,X

NOTH!I JMP DATAIN

This short program will take 256 successive data bytes from Port B
and store them in memory between $2000 and $20FF, then start
over. If Index Register X is set = 0 first, the first byte will be stored
at $2000.

PROGRAMMABLE COUNTERS

Two counter/timers are available in the User Port, with a single
input on port line CNT2. Both are part of U2, and can be used as
timers as discussed below. Each has a maximum count capacity of
65536, but the two can be chained together for a total count capa-
bility of over four billion counts. The single input line nominally

The Computer Journal / #62

indicates that only one can be used at a time unless they are chained
together as discussed below. When using a single counter, Timer B
is the best choice, since it has the most versatile modes.

Table 4 summarizes three counter modes for these timers and gives
the initialization and starting codes for the modes described. The
three modes are: single counter, chained counter and gated counter.
The single counter mode uses only Timer B, which counts positive
transitions (logic zero to logic one) on the CNT2 input line. The
chart calls for the B latch to be preloaded with $FFFF (65536
counts), but any desired count can be preloaded. End of count can
be determined by checking for Bitl of the ICR ($DDOD or 56589)
to be high, or by enabling the Timer B interrupt. In the chained
counter mode, Timer A counts the CNT2 input, Timer B counts
Timer A underflow pulses and the end count can be determined as
before. The maximum chained count capacity ts 4294967296. The
gated counter mode sets Timer B to count Timer A underflow pulses
only when the CNT2 input is high. Thus, the time that a signal is
high (logic one) can be measured to whatever resolution Timer A can
be programmed for. With a count of 1 in Timer A, the count
resolution is 2 uSec and the maximum input duration which can be
measured is 131 milliseconds. An 18 hour interval can be measured
at 1 millisecond resolution (1000 or $3E8 counts in Timer A).

TABLE 4 5626 COUNTER MODES

Mode Load CRA Load CRB Preload A Preload B
One counter X $A1 X $FFFF
Chained $21 $C1 $FFFF $FFFF
Gated counter $01 $E1 $0A $FFFF

SHIFT REGISTERS

The Shift Registers have two possible uses. First, using SP1 and
SP2 as strobe lines is discussed above. Second, if the counter
function is not used, the Shift Registers can serve as synchronous
serial input or output lines. That is, with appropriate programming,
an external device can sequentially input eight bits of data into the
Serial Data Buffer, using CNT as a clock line. An extemnal shift
register can be loaded with eight sequential bits from the Serial Data
Buffer. The data appears on the SP line and the CNT line serves as
a clock line.

TIMEKEEPING

The C-64 has two countdown timers and two Time-of-Day (TOD)
clocks available for the user. Neither TOD is used by the computer,
and both generate interrupts if you need them. The TOD in Ul
issues IRQ* interrupts, and the one in U2 issues NMI* interrupts.
It is easier to manage your own interrupts using only NMI*, espe-
cially if you need the screen active.

The two countdown timers are part of U2. These actually are
counter/timers which have very flexible operating modes. Both can
cause an NMI* interrupt, or can be polled to determine if the count
or time interval has finished. Each can take over an output pin, an
both used together can generate complex digital waveforms.

The TODs count time in 12-hour mode with one-tenth second
resolution, and the timers can be programmed to use a variety of
resolutions down to one microsecond accuracy. Unlike the software
clock in the C64, the TOD time is unaffected by external influences.
You can write a program to count days, weeks and months - what-
ever you wish. You can get an interrupt from the alarm, or you can
read the clock to get the time. To operate the timers, you load a
starting value and select a clock rate. The timer counts down to zero
and sets a flag. If the corresponding interrupt is set, it is issued.
Otherwise you can poll (check the flag bit) to find out if the timer

45

has finished.

This combination of timing abilities gives you unusual versatility. If
you need something to happen on a regular, unvarying schedule with
short intervals, use the timer. If you can plan ahead over hours or
days, compute a new alarm time, and set the alarm. The computer
can do other things until the alarm goes off, then do a second task.

This program reads one digit of the TOD clock:

" 5 POKES6587,0:POKE56584,0

10 X=PEEK(56585)

20 X=XAND15

30 POKE1048 X:POKE(55296 + 24) X
40 GOTO10

RUN the program. What you will see is a character at the top of
column 24 on the screen. The number and color of display will
change once each second. Here is what happens: line 5 starts the
clock by setting the hours and tenth-second registers to zero. Line
10 reads the current value in the TOD SECONDS register. Line 20
“‘masks off’” the units digit (remember the bit operations done
earlier?) Since this register is recording seconds, the value will
change once a second. Line 30 writes the character in column 24 of
the screen, and in the corresponding place in the Color Memory.
Digits 0 through 9 are @, A, B, ..., in screen code. At the same
time, digits 0 through 9 are colors. When the digit becomes 6 (blue),
the character disappears; it is the same color as the screen.

To set the clock fully, you need to enter a value in each of the five
registers. The clock is ready to run after the HOURS register is set,
but the clock doesn’t start running until the TENTH SECOND
register is set. This allows you to enter all the time values for a
certain time. Choose a time about two minutes in the future. enter
all the register values except the TENTH SECOND value, but type
the last one in. When the real time equals the clock setting, press
RETURN to enter the last value and start the clock in step with the
world.

" This listing demonstrates several important features of the TOD
clocks:

5 POKES6591,128

10 POKES6587,0.POKES6586,0:P OKE56585,40:POKES6584,0
15 POKE56591,0

20 POKE56587,0:POKES6586,0:POKES6585,0:POKES6584,0
25 B=PEEK(56589):PRINTB;:GOTO25

Before RUNning this program, enter the following command to be
sure the two timers are turned off:

25 B=PEEK(56585):PRINTB,;
30 FORX=1TO700:NEXTX.GOTO25

Now, RUN the program. A number of “‘0’" characters will be
printed, followed by a ““4’> about 29 seconds after the program was
started. Now let’s examine the program. Line 5 sets up the TOD
clock for setting the alarm. Line 10 writes 00:00:40.0 to the TOD
alarm register - or does it? (See below!) Line 15 prepares the TOD
time register for setting, and line 20 sets the time to 00:00:00:0.
When location 56584 is written, the clock starts running. Line 25
prints the contents of the Interrupt Control Register (ICR); when the
4> appears, the alarm has gone off. To see why it went off at 29
seconds instead of 40 seconds, change line 25 and add line 30:

25 B=PEEK(56585).PRINTB;
30 FORX=1TO700:NEXTX:GOTO25

The screen will fill with a series of counts in the seconds register of
the TOD. Note that the count proceeds irregularly:
1,2,3,4,5,6,7,8,9,16,17... Since this is a real-time clock, the Tenth-
Second Register, the Seconds register and the Minutes register count
up from 0 in decimal. The Tenth-Second register is a single digit
counting 0-9. The Seconds register increments the low order digit
as the Tenth-Second register “‘rolls over’’ to 0. However, when the
Seconds register low digit rolls over, the high digit becomes 1. The
Minutes Register does the same, but the Hours register has only a
single bit active in the high digit. Bit 7 is an AM-PM flag and bits
6 and 5 are unused.

At 12:59:59.9 AM, the binary contents of the Hours register is
0XX10010 (X means not used). One-tenth second later, at 1:00:00.0
PM, the Hours register holds 1XX10000.

So, even though the TOD clock reads ““people time”’, you still have
to allow for the digit format of the count. It is packed BCD
representation, with each digit counted separately. To set the alarm
for $40 (40 seconds), substitute 64 for 40 in line 10 above. The only
other timekeeper on the C64 is the “‘jiffy”” clock, which counts
coherently in 1/60 second intervals. This program illustrates the
jiffy count:

10 A=INT(TH60):PRINTA,
20 FORX=1TO600:NEXTX:GOTO10

The screen will fill with four columns of consecutive numbers, each
count representing the number of seconds since the machine was
turned on, unless a tape was loaded or some other function turned
off the IRQ* interrupt within the computer. Remember, the TOD
clock keeps uninterrupted, normal clock time.

COUNTDOWN TIMERS

Let’s use the timers and two keys on the keyboard to test your
manual dexterity. The concept is to set up the timer to measure 10
microsecond intervals, then start the timer with one key and stop it
with a second key. By reading the timer when the second keystroke
is detected, you get a number which can be converted to time. Use
HESMON to enter Listing 1, either using the Assemble command or
the Memory command. Once the data has been entered, use the
Disassemble command to verify correct entry. Enter G2002 and
watch the screen. Nothing visible will happen until you push the
1 key and then the *“2°> key. When 2’ key is pushed,
HESMON should return with this prompt:

PC IRQ SR AC XR YR SP
;203D EA31 B5 C5 49 01 FA

Next, use the command M2000 and see this display:

M2000 XX 66 A2 49 A0 01 A9 FF

The ““XXYY"’ digits will vary in the general range C000-8000. For
example, let’suse C55D as one result. $C55D = 50525, which must
be subtracted from 65535 ($FFFF) to get the number of counts. The
result then should be divided by 100000 to give the number of
seconds in the timing interval:

65535-50525=15010;15010/1 E5 = .1501 seconds

To give some perspective, between .135 and .16 seconds is an

The Computer Journal / #62

excellent response time.

LISTING 1 - RESPONSE TIME TESTER

1 1002A249 LDX#3$49 TIMER B START CODE

2 2004 A001 LDY #$01 TIMER A START CODE

3 2006 AS FF LDA #$FF FULL COUNT FOR TIMER B
4 2008 8D 06 DD STA $DD06 IN TIMER B LOW HATCH
5 200B 8D 07 DD STA $DDO07 IN TIMER B HIGH LATCH
6 200E AGOA LDA #$0A TEN COUNTS

7 20108D 04 DD STA $DDO04 IN TIMER A LOW LATCH
8 2013A300 LDA#800 ZERO COUNT

9 201580 05 DD STA $DDO05 IN TIMER A HIGH LATCH
102018 AD 01 DC LDA $DC01 READ KEYBOARD INPUT
11201BCOFF CMP #$FF TEST FOR NO BITS LOW
12201DFOF9 BEQ $2018 IF SO, TEST AGAIN
13201F COFE CMP #$FE BIT 0 LOW?

142021 DOF5 BNE $2018 IF NOT, TEST AGAIN
152023 8C OE DD STY $DDOE ELSE, START TIMER A
16 2026 8E OF DD STX $DDOF AND START TIMER B

17 2028 AD 01 DC LDA $DC01 TEST KEYBOARD AGAIN
18202C COF7 CMP #$F7 IS BIT 3LOW?

19202E DOF9 BNE $2029 IF NOT, TEST AGAIN

202030 AD 06 DD LDA $DDO06 IF SO, READ TIME B LOW BYTE

212033 8D 01 20 STA $2001 AND SAVE IT

222036 AD 07 DD LDA $DDO07 GET HIGH BYTE ALSO
23 2039 8D 00 20 STA $2000 AND SAVE IT
24203C00 BRK RETURN TO HESMON

N) |

CNT1—
RESET
!
+ 5\ 1

The response time test works this way: Lines 1-2 set up start
commands for the two timers. By pre-loading these two values,
several microseconds are saved starting the timers. In lines 15-16,
Timer A is started first, since it produces clock pulses for Timer B.
Figure 4 shows the bit assignments for CRA and CRB with the start
commands shown. $01 starts Timer A in free-running mode while
counting the processor clock (1.02 MHz). $49 starts Timer B in one-
shot mode, counting underflow pulses from Timer A.

Lines 3-5 put $FF (full count) in the Timer B latches, and lines 6-
9 sets a count of $0A (10) in Timer A latches. Lines 10-14 set up
a tight loop which tests for the *“1°” key, rejecting all other keys. 13-
16 starts the timers as discussed before and 17-19 waits for the <2’
key. The last 5 lines read and save Timer B’s count (low byte first
for better accuracy) and then exit to HESMON. The program can be
run as many times as you wish - just start it each time with G2002.
In the interests of maximum accuracy, you may wish to make a
correction. The commodore 64 clock speed is 1.02 MHz, so the
.1501 seconds is 2% less (.1472). This correction might be impor-
tant in some experiments!

Hopefully, this discussion will help you create more useful programs
more easily. The versatility of the 6526 CIA gives you a bewildering
choice of alternatives, but the organization is rational. Have fun!

— CNT2

sPz
PCZ
r r PAS
3

: E E 4 E & E 2] éf 15 12
E ¢ D E F { N N

FLAG <
PEC

rel —~

ol 34

Pg3 -

H J kK L
L L Lpaz
PET
PEC
PES
PE%

GROUND PINS ~- 1,6,M,1Z

Figure 1. Pinout of C64 User Port.

ly 2'\\ e
$H wE™ el

Ym Sw
0 oE

€.
aF

I» gw=

Aw 10= 118 12=

sH sJ =k =L =R ."D

¥——LOGYC PROBE POMER
H—————— WOLTRETER AND LOGIC COMRON

Figure 2. View of User Port connector showing pinout and connections for logic probe or voltmeter.

e

]

b

FLEl sp

RLH‘ TR| TR

8171

L

5

L]

1 Z 1 0

Figure 3. Bit function assignments for CRA and CRB.

The Computer Journal / #62

47

The Computer Journal

Back Issues

Sales limited to supplies in stock.

Volume Number 1:

-lssues 1 to 9

- Serial interfacing and Modem transfers
- Floppy disk formats, Print spooler.

- - Adding 8087 Math Chip, Fiber optics

- 8-100 HI-RES graphics.

- Controlling DC motors, Multi-user
column.

- VIC-20 EPROM Programmer, CP/M 3.0.

- CPIM user functions and integration.

Volume Number 2:

-issues 10to 19

+ Forth tutorial and Write Your Own.

» 68008 CPU for $-100.

- RPM vs CP/M, BIOS Enhancements.
- Poor Man's Distributed Processing.
- Controlling Apple Stepper Motors.

- Facsimile Pictures on a Micro.

- Memory Mapped 1/O on a ZX81.

Issue Number 20:

- Designing an 8035 SBC

- Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

- Soldering & Other Strange Tales

- Build an S-100 Fioppy Disk Controller:
WD2797 Controller for CP/M 68K

Issue Number 21:

- Extending Turbo Pascal: Customize with
Procedures & Functions

- Unsoldering: The Arcane Art

- Analog Data Acquisition & Contrel:
Connecting Your Computer to the Real
World

- Programming the 8035 SBC

Issue Number 22:

NEW-DOS: Write Your Own Operating
System
-Variability in the BDS C Standard Library
- The SCSl Interface: Introductory Column
- Using Turbo Pascal ISAM Files
- The Ampro Little Board Column

{ssue Number 23:

© € Column: Flow Control & Program
Structure

“ The Z Column: Getting Started with
Directories & User Areas .

' The SCS! Intsifate: Introduction to SCS!

- NEW-DOS: The Console Command
Processor

- Editing the CP/M Operating System

- INDEXER: Turbo Pascal Program to Create
an Index

- The Ampro Little Board Column

Issue Number 24:

- Selecting & Building a System

- The SCSI Interface: SCSI Command
Protocol

- Introduction to Assemble Code for CP/M

- The C Column; Software Text Filters

- Ampro 188 Column: Installing MS-DOS
Software

- The Z-Column

- NEW-DOS: The CCP iInternat Commands

- ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

Issue Number 26;
- Bus Systems: Selecting a System Bus
- Using the SB180 Real Time Clock
- The SCSI Interface: Software for the SCSI
Adapter
- Inside Ampro Computers
NEW-DOS: The CCP Commands
(continued)
- ZSIG Corner
- Affordable C Compilers
- Concurrent Multitasking: A Review of
DoubleDOS

issue Number 27:
- 68000 TinyGiant. Hawthorne's Low Cost
16-bit SBC and Operating System

The Art of Source Code Generation:
Disassembling Z-80 Software

- Feedback Control System Analysis: Using
Root Locus Analysis & Feedback Loop
Compensation

- The C Column: A Graphics Primitive
Package

- The Hitachi HD64180. New Life for 8-bit
Systems

- 28IG Corner: Command Line Generators
and Aliases

- A Tutor Program in Forth: Writing a Forth
Tutor in Forth

- Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

Issue Number 28:

- Starting Your Own BBS

- Build an A/D Converter for the Ampro Little
Board

- HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA

- Using SCSI for Real Time Control

- Open Letter to STD Bus Manufacturers

- Patching Turbo Pascal

- Choosing a Language for Machine Control

Issue Number 29:

- Better Software Filter Design
- MDISK: Adding a 1 Meg RAM Disk to
Ampro Littte Board, Part 1

Using the Hitachi hd64180: Embedded
Processor Design
- 68000: Why use a new OS and the 680007
- Detecting the 8087 Math Chip
- Floppy Disk Track Structure
- The ZCPR3 Corner

Issue Number 30:

- Double Density Floppy Controlier
- ZCPR3 IOP for the Ampro Littie Board
- 3200 Hackers' Language
- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2
- Non-Preemptive Multitasking
- Software Timers for the 68000
- Lilliput Z-Node
- The ZCPR3 Corner
The CP/M Corner

Issue Number 31:

- Using SCS| for Generalized 1/O

- Communicating with Floppy Disks: Disk
Parameters & their variations

- XBIOS: A Replacement BIOS for the SB180
- K-O0S ONE and the SAGE: Demystifying
Operating Systems

- Remote: Designing a Remote System
Program

- The ZCPR3 Cotner: ARUNZ Documentation

Issue Numbser 32:

Language Development: Automatic
Generation of Parsers for Interactive
Systems
- Designing Operating Systems: A ROM
based OS for the 281
- Advanced CP/M: Boosting Performance
- Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an In-
Depth Look at the FCB

WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCI! Terminal Based
Systems
- K-OS ONE and the SAGE: System Layout
and Hardware Configuration
The ZCPR3 Comer: NZCOM andZCPR34

Issue Number 33:

Data File Conversion: Writing a Filter to
Convert Foreign File Formats
- Advanced CP/M: ZCPR3PLUS & How to
Wirite Self Relocating Code
- DataBase: The First in a Series on Data
Bases and Information Processing

SCSI for the S-100 Bus: Another Example
of SCSI's Versatility
- A Mouse on any Hardware: Implementing
the Mouse on a Z80 System
- Systematic Elimination of MS-DOS Files:
Part 2, Subdirectories & Extended DOS
Services
- ZCPR3 Corner: ARUNZ Shells & Patching
WordStar 4.0

Issue Number 34:

- Developing a File Encryption System.

- Database: A continuation of the data base
primer series.

- A Simple Multitasking Executive: Designing
an embedded controller multitasking
executive.

- ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

- New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program.

- Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for CP/
M22

- Macintosh Data File Conversion in Turbo
Pascal.

+ The Computer Corner

Issue Number 35:

- All This & Modula-2: A Pascal-like
alternative with scope and parameter
passing.

- A Short Course in Source Code
Generation: Disassembling 8088 software to
produce modifiable assem. source code.

- Real Computing: The NS32032.

- §-100: EPROM Burner project for S-100
hardware hackers.

- Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

- REL-Style Assembly Language for CP/M
and Z-System. Part 1. Selecting your
assembler, linker and debugger.

- The Computer Corner

Issue Number 36:

- Information Engineering: Introduction.

- Modula-2: A list of reference books.

- Temperature Measurement & Control:
Agricultural computer application.

- ZCPR3 Corner: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

- Real Computing: NS32032 hardware for
experimenter, CPUs in series, software
options.

- SPRINT: A review.

- REL-Style Assembly Language for CP/M
& ZSystems, part 2.

- Advanced CP/M: Environmental
programming.

- The Computer Comer.

Issue Number 37;

- C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

- 2CPR3 Corner. Z-Nodes, patching for
NZCOM, ZFILER.

- Information Engineering: Basic Concepts:
fields, field definition, client worksheets.

- Shells: Using ZCPR3 named shell
variables to store date variables.

- Resident Programs: A detailed look at
TSRs & how they can lead to chaos.

- Advanced CP/M: Raw and cooked console
/[e}

- Real Computing: The NS 32000.

- ZSDOS: Anatomy of an Operating System:
Part 1.

- The Computer Corner.

Issue Number 38:
- C Math: Handling Dollars and Cents With
C.
- Advanced CP/M: Batch Processing and a
New ZEX.

C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.
- The Z-System Corner, Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.
- Information Engineering: The portable

Information Age.

Computer Aided Publishing: Introduction to
publishing and Desk Top Publishing.
- Shells: ZEX and hard disk backups.
- Real Computing: The National
Semiconductor NS320XX.
- ZSDOS: Anatomy of an Operating System,
Part 2.

Issue Number 39:

- Programming for Performance: Assembly
Language techniques.

- Computer Aided Publishing. The Hewlett
Packard LaserJet.

- The Z-System Corner:
enhancements with NZCOM.

- Generating LaserJet Fonts: A review of
Digi-Fonts.

- Advanced CP/M: Making old programs Z-
System aware.

- C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

- Shells: Using ARUNZ alias with ZCAL.

- Real Computing: The National
Semiconductor NS320XX.

- The Computer Corner.

System

lssue Number 40:

- Programming the Laserdet: Using the
escape codes.
- Beginning Forth Column: Introduction.
- Advanced Forth Column: Variant Records
and Modules.
- LINKPRL: Generating the bit maps for PRL
files from a REL file.
- WordTech's dBXL: Writing your own
custorn designed business program.
Advanced CP/M: ZEX 5.0xThe machine
and the language.
Programming for Performance: Assembly
language techniques.
- Programming Input/Qutput With C:
Keyboard and screen functions.
- The Z-System Corner. Remote access
systems and BDS C.
- Real Computing: The NS320XX
- The Computer Corner.

Issue Number 41:

- Forth Column: ADTs, Object Oriented
Concepts.
- Improving the Ampro LB: Overcoming the
88MDb hard drive limit.
- How to add Data Structures in Forth
- Advanced CP/M. CP/M is hacker's haven,
and Z-System Command Scheduler.
- The Z-System Corner. Extended Muitiple
Command Line, and aliases.
- Programming disk and printer functions
with C.
- LINKPRL: Making RSXes easy.
- SCOPY: Copying a series of unrelated
files.

The Computer Corner.

Issue Number 42:

- Dynamic Memory Allocation: Allocating
memory at runtime with examples in Forth,
- Using BYE with NZCOM.
- C and the MS-DOS Screen Character
Aftributes.

Forth Column: Lists and object oriented
Forth.
- The Z-System Corner. Genie, BDS Z and
Z-System Fundamentals.
- 68705 Embedded Controller Application:
An example of a single-chip microcontroiler
application.
- Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.
- Real Computing: The NS 32000.
- The Computer Corner

Issue Number 43:

- Standardize Your Floppy Disk Drives.
- A New History Shell for ZSystem.

Heath's HDOS, Then and Now.
- The ZSystem Corner: Software update
service, and customizing NZCOM.
- Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C

The Computer Journal / #62

graphics library.

- Lazy Evaluation: End the evaluation as
soon as the result is known.

- 8-100: There's still life in the old bus.

- Advanced CP/M: Passing parameters, and
complex error recovery.

- Real Computing: The NS32000.

- The Computer Corner.

Issue Number 44:

* Animation with Turbo C Part 1: The Basic
Tools.

- Multitasking in Forth: New Micros F68FC11
and Max Forth.

- Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

- DosDisk: MS-DOS disk format emulator for
CP/M.

- Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

- Real Computing: The NS32000

- Forth Column: Handling Strings.

- Z.System Comer: MEX and telecommuni-
cations.

+ The Computer Corner

Issue Number 45:

- Embedded Systems for the Tenderfoot:
Getting started with the 8031.

- The Z-System Corner. Using scripts with
MEX.

- The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

- Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

- Advanced CP/M: String searches and
tuning Jetfind.

- Animation with Turbo C: Part 2, screen
interactions.

- Real Computing: The NS32000

- The Computer Corner.

issue Number 46
- Build a Long Distance Printer Driver

Using the 8031's built-in UART for serial
communications.
- Foundational Modules in Modula 2.
- The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.
- Animation with Turbo C: Text in the
graphics mode.
- 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
280 CTC.

Issue Number 47:

- Controlling Stepper Motors with the
68HC11F

- Z-System Corner: ZMATE Macro Language
- Using 8031 Interrupts

- T-1: What it is & Why You Need to Know

- ZCPR3 & Modula, Too

- Tips on Using LCDs: Interffacing to the
68HCT05

- Real Computing: Debugging, NS32 Muiti-
tasking & Distributed Systems

- Long Distance Printer Driver: correction

- ROBO-SOG 80

The Computer Journal Back Issues

Issue Number 48:

- Fast Math Using Logarithms

- Forth and Forth Assembler

- Modula-2 and the TCAP

- Adding a Bernoulli Drive to a CP/M
Computer (Building a SCSI Interface)

- Review of BDS Z"

- PMATE/ZMATE Macros, Pt. 1

- Real Computing

- Z-System Corner: Patching MEX-Plus and
TheWord, Using ZEX

- Z-Best Software

- The Computer Corner

Issue Number 49.

- Computer Network Power Protection
Floppy Disk Alignment w/RTXES, Pt. 1

- Motor Control with the F68HC11

- Controlling Home Heating & Lighting, Pt. 1

- Gefting Started in Assembly Language

- LAN Basics

- PMATE/ZMATE Macros, Pt. 2

- Real Computing

- Z-System Corner

- Z-Best Software

- The Computer Corner

Issue Number 50:
Offload a System CPU with the 7181

- Floppy Disk Alignment w/RTXEB, Pt. 2
Motor Control with the F68HC11

- Modula-2 and the Command Line
Controlling Home Heating & Lighting, Pt. 2
Getting Started in Assembly Language Pt 2

- Local Area Networks

- Using the ZCPR3 IOP

- PMATE/ZMATE Macros, Pt. 3

- 2-System Corner, PCED

- Z-Best Software

- Real Computing, 32FX16, Caches

- The Computer Corner

Issue Number §1:

- Introducing the YASBEC

- Floppy Disk Alignment w/RTXEB, Pt 3

- High Speed Modems on Eight Bit Systems
- A Z8 Talker and Host

- Local Area Networks--Ethernet

- UNIX Connectivity on the Cheap

- PC Hard Disk Partition Table

- A Short Introduction to Forth

- Stepped inference as a Technigue for
Intelligent Real-Time Embedded Control

- Real Computing, the 32CG180, Swordfish,
DOS Command Processor

- PMATE/ZMATE Macros

- Z-System Corner, The Trenton Festival

- Z-Best Software, the Z3HELP System

- The Computer Corner

Issue Number §2:

- YASBEC, The Hardware

- An Arbitrary Waveform Generator, Pt. 1
-B.Y.O. Assembiler...in Forth

- Getting Started in Assembly Language, Pt. 3
- The NZCOM IOP

- Z-System Corner, Programming for
Compatibility

- Z-Best Software

- Real Computing, X10 Revisited

- PMATE/ZMATE Macros

- Controlling Home Heating & Lighting, Pt. 3

- The CPU280, A High Performance Single-
Board Computer

- The Computer Comer

Issue Number 33:
- The CPU280
- Local Area Networks
- Am Arbitrary Waveform Generator
- Real Computing
- Zed Fest ‘91
- Z-System Comer
- Getting Started in Assembly Language
- The NZCOM 10P
- Z-BEST Software
- The Computer Corner

Issue Number 84.

- Z-System Corner

- B.Y.O. Assembler

- Local Area Networks

- Advanced CP/M

- ZCPR on a 16-Bit Intel Platform

- Real Computing

- Interrupts and the 280

- 8 MHZ on a Ampro

- Hardware Heavenn

- What Zilog never told you about the Super8
* An Arbitary Waveform Generator
- The Development of TDOS

- The Computer Corner

ssue Number 53:

- Fuzzilogy 101

- The Cyclic Redundancy Check in Forth
- The Internetwork Protocol (IP)

- Z-System Corner

- Hardware Heaven

- Real Computing

- Remapping Disk Drives through the Virtual
BIOS

- The Bumbling Mathmatician

- YASMEM

- Z-BEST Software

- The Computer Corner

issue Number 56:

- TCJ - The Next Ten Years

- Input Expansion for 8031

- Connecting IDE Drives to 8-8it Systems
- Real Computing

- 8 Queens in Forth

- 2-System Corner

- Kaypro-84 Direct File Transfers

- Analog Signai Generation

- The Computer Comer

Issue Number 57:
- Home Automation with X10
- File Transter Protocols

- MDISK at 8 MHZ.

- Real Computing

- Shell Sort in Forth

- Z-System Corner

- Introduction to Forth

- DR. $-100

- Z AT Last!

- The Computer Corner

Issue Number 58:
- Multitasking Forth
- Computing Timer Values
- Affordable Development Tools
- Real Computing
- Z-System Corner
Mr. Kaypro
-DR. S-100
The Computer Corner

Issue Number 89:
- Moving Forth
- Center Fold IMSAl MPU-A
- Developing Forth Applications
- Real Computing
- Z-Systern Corner
- Mr. Kaypro Review
-DR. §-100
The Computer Corner

Issue Number 60:

- Moving Forth Part [I

- Center Fold IMSAI CPA
- Four for Forth

- Real Computing

- Debugging Forth

- Support Groups for Classics
- Z-System Corner

- Mr. Kaypro Review
-DR. $-100

- The Computer Corner

Issue Number 61:

- Muttiprocessing 6809 part |

- Center Fold XEROX 820

- Quality Control

- Real Computing

- Support Groups for Classics
- Z-System Corner

- Operating Systems - CP/M

- Mr. Kaypro SMHZ

- The Computer Corner

SPECIAL DISCOUNT

15% on cost of Back Issues
when buying from 1 to Current
Issue.

10% on cost of Back Issues
when buying 20 or more
issues.

Maximum Cost for shipping is
$25.00 for U.S.A. and $45.00

* The Computer Corner - Servos and the FB8HC11 for all other Countries.
4 us. Canada/Mexico Europe/Other TN
Subscriptions {CA not taxable) (Surface) (Air) (Surface) (Air) Name:
1year (6 issues) $24.00 $32.00 $34.00 $34.00 $4400 Address:
2 years (12 issues) $4400 $60.00 $64.00 $64.00 $84.00
Back Issues (CA tax) add these shipping costs for each issue ordered
Bound Volumes $20.00 ea +$300 +$350 +$650 +$400 +$17.00
#20 thru #43 are $3.00 ea. +$100 +$1.00 +$1.25 +$150 +$250
#44andup are$4.00ea. +$125 +$125 +$1.75 +$200 +$350 Credit Card # g - y exp /

Payment is accepted by check, money order, or Credit Card (M/C,

Software Disks (CA tax) add these shipping costs for each 3 disks ordered VISA, CarteBlanche, Diners Club). Checks must be in US funds,

MicroC Disks are $6.00ea +$1.00 +3100 +$1.25 +$150 +850 grawn on a US bank. Credit Card orders can call 1(800) 424-8825.
tems: Back Issues Total
MicroG Disks Total TCJ_Ihe_CQmputeL.lQumal
California state Residents add 7.25% Sales TAX P.O. Box 535. Lincoln. CA 95648-0535
Subscription Total l ’ 4
P — Phone (916) 645-1670
k Total Enclosed)

The Computer Journal / #62 49

The Computer Journal - Micro Cornucopia Kaypro Disks

K1
MODEM PROGRAMS

K2
CP/M UTILITIES

K3
GAMES

K4
ADVENTURE

K5
MX80/GEM 10X GRAPHICS

K6
TEXT UTILITIES

K7
SMALL C VER 2

K8
SOURCE OF SMALL C

K9
GENERAL UTILITIES

Ki0
Z80 AND LINKING ASSEM

K1l
CHECKBOOK PROGRAM &
LIBRARY UTILITIES

‘K12
KAYPRO FORTH

K13
SOURCE OF FIG-FORTH

K14
SMARTMODEM PROGRAMS

K15
HARD DISK UTILITIES

K16
PASCAL COMPILER

K17
Z80 TOOLS

K18
SYSTEM DIAGNOSTICS

K19
PROWRITER GRAPHICS

K20
MICROSHERE’S COLOR
GRAPHICS BOARD

K21
SBASIC & SCREEN DUMP

K22
ZCPR

K23
FAST TERMINAL &
RCPM UTILITIES

K24
KEYBOARD TRANSLATOR &
MBASIC GAMES

K25
Z80 MACRO ASSEMBLER

K26
EPROM PROGRAMMER/TOOLS

K27
TYPING TUTORIAL

K28
MODEM 730 SOURCE

K29
TURBO PASCAL GAMES |

K30
TURBO PASCAL GAMES 1l

K31
TURBO BULLETIN BOARD

K32
FORTH-83

K33
UTILITIES

K34
GAMES

X35
SMALL C VER 2.1

K36
SMALL C LIBRARY

K37
UTILITIES PRIMER

K38
PASCAL RUNOFF WINNERS
FIRST - THIRD

K39
PASCAL RUNOFF WINNERS
FORTH & FIFTH

K40
PASCAL RUNOFF WINNERS
SIXTH PLACE

K41
EXPRESS 1.01 TEXT EDIT

K42
PASCAL RUNOFF-GRAPHICS

K43
PASCAL RUNOFF-GAMES

K44
PASCAL RUNOFF-PRINTERS

K45
PASCAL RUNOFF-UTILITIES

K46
PASCAL RUNOFF-TURBO UTILS

K47
256K RAM SOFTWARE

K48
C CONTEST WINNERS I

K49
C CONTEST WINNERS Il

P.O. Box 535, Lincoln, CA 95648-0535
Phone (916) 645-1670

Shipping Cost to

Added these costs

U.S.

$1.00

Micro C Disks are $6.00 each plus shipping costs.

Canada/Mexico
Surface Air
$1.00 $1.25

Europe/Other
Surface Air
$1.50 $2.50

Shipping costs are for GROUPS of 1 to 3 disks.

The Computer Journal / #61

Computer Corner

By Bill Kibler

Editorial Comment

 CPMand LANS

It is time to go back to some advanced
fundamentals. I will review moving CP/
M, or at least talk about the Alteration
Guide, touch lightly on LANS and hit
language compatibility square on.

ALTERATION GUIDE

James Harper indicated he wanted to
find a copy of ‘‘Digital Research Alter-
ation Guide’’ for CP/M 2.2. I rummaged
around and found an old copy of *‘CP/M
2.2 Manual’’. A 1978 book (with a $.50
price tag on the inside) that I believe
represented the entire documentation
supplied at that time. It contains 6 sec-
tions which can some times be found as
separate books. The Alteration Guide
was section 6 and it secms to me that
several of the S-100 software guides had
there own version of this section as the
information is rather hardware specific
at times. Let me explain.

CP/M BITS and PIECES

CP/M is composed of three sections,
Command Processor (CP), Basic Disk
Operating System (BDOS), and Basic
Input Output System (BIOS). Digital
Research was responsible for the CP and
BDOS, while the hardware developer
(or you) were responsible for the BIOS.
Since memory was not cheap in these
carly days, not all systems came with a
full 64K of memory. Anything from
about 16K up was possible, with 48K
being very common. The BIOS might
have one, two, or more drives to handle
plus communications with a terminal or
video card (memory mapped and thus
48K memory for programs and 16K for
video display (or less)).

If you were bringing the system up from

scratch, you had to write your BIOS and
load the system disk for the first time. If

The Computer Journal / #62

you just added more memory and didn’t
change the BIOS then all that was needed
was to reassemble your BIOS code for a
new address and MOVCPM to the new
S1Z¢.

I think here is where James ran into
problems. CP/M and the BIOS are as-
sembled to run at a given address. That
means the address which the program
uses are preset and you must have RAM
that the CPU can use at those locations.
One step I missed was that in CP/M the
entire system (all the machine code in-
structions for all three parts) is stored on
disk. The typical ROM contained a
monitor for debugging and a simple
BOOT loader that was used either from
the monitor or automatically on power
up. This boot loader just read the first
tracks of the disk which contained the
entire CP/M (or a more complex BOOT
loader) and placed it in memory at a pre-
defined location. It then jumped to an
entry point and started executing the
code at that location.

As you can see all this requires that the
location of where the program will be
run from must be known in advance.
The boot loader must know where to put
the program, how much to put there, and
where to go after successfully loading it.
You do all that when you assemble the
BIOS and MOVCPM. I keep saying
MOVCPM and you keep saying (I'm
sure) what is that. Since CP/M was not
supplied for all possible sizes of use,
relocatable code was provided instead.
The program MOVCPM was respon-
sible for taking the relocatable code and
finding all the address references and
adjusting them for the new memory lo-
cation. They did this by using a table of
bits that represented each word (I think,
been sometime since I did this) in the

program. If the bit was set, an address
that needed changing was indicated.
Simply start at the beginning of the pro-
gram checking words and correspond-
ing bits until you find one set and then
subtract or add to the referenced word
value by the change specified.

Thus you could alter CP/M to run at any
location as long as you had access to the
BIOS source code. The BIOS would be
assembled separately and added on to
the end of the CP/BDOS code before
loading onto disk. CP/M expects the
BIOS jump table (a list of addresses,
each one representing a specific func-
tion the BIOS is to perform) to be at an
exact amount from the beginning of the
BIOS. If you MOVCPM but don’t
reassemble the BIOS it will not work.

This is all covered in some what obscure
discussions in the Alteration Guide. I
dare say that you would be better off
finding an alteration guide from some
other vendor or writer.

Just remember that CP/M’s MOVCPM
takes care of the CF/BDOS sections, the
BIOS is your problem. That also ex-
plains why you sce so many people look-
ing for source to BIOS’s in our help
wanted section (still looking for SAGE/
Stride CP/M68K BIOS source). My guess
is that James didn’t know about
reassembling the BIOS, and thus CP/M
goes out to lunch after the first call to the
BIOS which uses an incorrect address.

LANS

I now have a Novel NetLite network
running on three clone stations. Since
DOS still isn’t multitasking, I have been
forced to do this (much rather not, but do
I have a choice...) just to be able to print

51

mailing labels, while downloading from
GEnie and editing 7CJ at the same time.
It works using cheap 3COM 3C501
cards. Cheap simply because people have
no idea what cards they are. Seems
3COM forgot to put any identifiers on
these cards and unless you know them
by sight your lost. It took me several

_months and many tries before 1 found

out what they were. Now I can buy three
for $10 with a ‘“‘guess I will just use
them for parts’” line at swap meets. The
problems don’t end there, as drivers are
not included with Novels programs. They
are available on the CompuServe 3COM
Library section (3C501.EXE or ZIP I
forgot which) and inside Novels Driver
Update files (just get their latest ver-
sion).

I have used these cards on and off for
several years now without any card re-
lated problems. Finding drivers was the
only main problem, and now that I know
my way around CompuServe, getting
updates is simple.

I did get the latest version of LBL (Little
Big Lan, the $75 network) but it doesn’t
support the 3C501 card, yet. LBL looks
better than Netlite in some ways, espe-
cially with more options of interfacing to
other non LAN systems. LBL is just an
upgraded version of the $25 network

‘with two LAN drivers(NE2000 and

Arcnet). They say it is not possible to
make it CP/M or Z80 compatible, and I
see what they mean. An interface would
be easy to do, as their structure is really
platform independent. The money to be
gained however is very questionable. Lots
of hacking time with little monetary re-
wards.

After reviewing the LBL and then see-
ing some TCP/IP information, I am be-
ginning to consider FTP as an option. In
theory you can MOUNT a drive using
FTP with TCP/IP (see Real Computing
in this issue for what all these letters
mean) and have it appear as just another
drive. Since I use Netlite only for the
drive sharing option, I would want to use
a CP/M system in just such a way. TCP/
IP with FTP sound like it might work.
One of FTP’s features is cross platform
transfers and CP/M to DOS or UNIX
would be just that.

52

What also makes FTP of interest is the
availability of free software. I found
3C501 driver SOURCE code as well as
serial and many others on a support disk
for a TCP/IP Developer Kit. They are
called Clarkson Drivers and can be found
on Internet and many Unix boards.

All in all it looks like given some time
I think I can develop LAN and senial
communications between different sys-
tems. Now all I need to do is develop the
same ability with languages.

Language What?

Well the votes are starting to come in on
what language to use and why. Pascal
from Tilmann Reh, build a converter for
any language to Forth from Rick Rod-
man, and several readers who pointed
out that BASIC was supplied FREE with
most 8 bit systems. After almost seven-
teen years of assembly language, [would
vote for that if it made any sense. And
that my friends is the real problem. Talk-
ing about languages is like talking about
political parties.

Take our president for example. He may
be doing the best job in the world, but if
you perceive the opposite, next election
you will vote against him. Computer
languages are the same! Facts have little
to do with your choice. You will use the
language that you perceive to suit your
task the best, if you are given any choice
in the matter.

I dare say choice is not an option to most
these days. I spent the last three years in
68000 assembly, because that was what
the product had been developed in. With
ten years development already invested,
it was far cheaper and wiser to continue
the same course than change to the latest
fad language.

When it comes to teaching our readers
about some topic or programming situ-
ation, what I want is to NOT have the
language be an issue. I want to get across
the fundamental concept, the plain
theory, so it can be used in any situation.
If we do it in C, Forth, or BASIC, with-
out some pseudo code, flow charting, or
enough comments to help you do it in
your favorite language, then we have
failed to teach.

It is sort of like my stand on PALs. Yes,
everyone uses PAL these days, but to do
so properly, you must understand regu-
lar logic. Sure you could not understand
regular logic and still write PALs, but
you will quickly find yourself at a dead
end if you try to go to the next step in
devices (they (LCA’s)drop back and use
logic block as the design vehicle). PAL
only understanding will also let you pass
over $.25 devices in favor of fancy PAL
decoding circuits.

Languages are the same. If we don’t
understand the overall concept of pro-
gramming, making intelligent choices is
not possible. C is the fad, because most
programming managers have little to no
knowledge of programming or other
options. Managers look at cost of devel-
opment (available tools) and availability
of cheap programmers. C programmers
are coming out of our colleges by the
dozens, and thus lower the cost due to
competition for few jobs. Whether Forth
is better has no place in the discussion,
the option is whether or not the manager
has a perceived understanding of it’s
advantage over another language.

At TCJ, 1 would rather not get into the
politics of a language. The desire is to
provide teaching articles that let the
reader choose a language that fits their
needs. So based on that, I would list
language choices like this; 1) BASIC,
because it came with most systems and
can be easily learned; 2) Assembly, again
many systems contained their own as-
sembler, editor, and linkers, however it
is not portable at ali(!); 3) Forth, not
because it 1s easy to learn, but because it
is the only truly platform independent
language around; 4) PASCAL, because
it is truly a structured language, and
good structure is portable to all lan-
guages; 5) SMALL-C, although limited
and also difficult to learn, many public
domain adaptions are available of this
implementation (0OS9, FLEX, CP/M,
MSDOS, CP/M68K (7)), and could be
made platform independent.

Well there is my stand. How about your
position, Send those letters and cards to
me, Bill Kibler, TCJ, BOX 535, Lin-
coln, CA, 95648.

The Computer Journal / #62

TC ’ The Computer Journal

Discover

The Z-Letter
The Z-letter is the only monthly
publication for CP/M and Z-System.
Eagle computers and Spellbinder support.
Licensed CP/M distributor.

Advent Kaypro Upgrades
TurboROM. Allows flexibie
configuration of your entire

system, read/write additional
formats and more, only $35.
Personality Decoder Boards

Run more than two drives when

using TurboROM, $25.

Hard Drive Conversion Kits. Call

Subscriptions: $18 US, §22 Canada and
Mexico, $36 Overseas. Write or call for

free sample. or write for availability & pricing.
The Z-Letter
Lambda Software Publishing Call (916)483-0312
149 West Hilliard Lane eves, weekends or write

Chuck Stafford
4000 Norris Ave.
Sacramento, CA 95821

Eugene, OR 97404-3057
(503) 688-3563

\ Lincoln, CA 95648-0535

/" TCJ MARKET PLACE)

Advertising for small business
First Insertion: $50
Reinsertion: $35

Rates include typesetting.
Payment must accompany order.
VISA, MasterCard, Discover,
Diner's Club, Carte Blanche,
JCB, EuroCard accepted.
Checks, money orders must be
US funds. Resetting of ad
consitutes a new advertisement
at first time insertion rates.
Mail ad or contact ,

The Computer Journal
P.O. Box 5356

J

CP/M SOFTWARE

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $19.95
plus 83.00 shipping and handling. Also, MS/PC-DOS Soft-
ware. Disk Copying, including AMSTRAD. Send self addressed,
stamped envelope for free Flyer, Catalog $1.00

Elliam Associates
Box 2664
Atascadero, CA 93423
805-466-8440

New from

IMSAI Altair
Compupro Morrow

~ Forth: !
+ The New Model ¢

Cromemco
Cards. Docs - Systems
Dr. $-100 e

Herb Johnson, ST W ?
oo oaias | | LAE e

Technical Times

(609) 771-1503 or call 1-800-688-3567

8 BITS and Change
CLOSING OUT SALE!
All 12 Back Issues
for only $40
Send check to
Lee Bradiey
24 East Cedar Street
Newington, CT 06111

(203) 666-3139 voice
(203) 665-1100 modem

280 STD USERS!

Cost Effective Upgrade
Clock Speeds to 10 MHz
1 Mbyte On-board Memory

Increase your system performance and reliability
while reducing your costs by replacing three of the
existing cards in your system with one
Superintegrated Z80 Card from Zwick Systems.

A Superintegrated Card in your system protects your
software investment, requiring only minor changes to
your mature Z80 code. You can increase your
processing performance by up to 300 percent in a
matter of days!

Approximatly 35 percent of each Superintegrated
Card has been reserved for custom /O functions
including A/D, D/A, Industrial O, Paralle! Ports, Serial
Ports, Fax and Data Modems or aimost any other
form of /O that you are currently using.

Call or Fax today for complete information on this
exciting new line of Superintegrated Cards and
upgrade your system the easy way!

ZWICK SYSTEMS INC.
Tel (613) 726-1377, Fax (613) 726-1902

